Question 9.7: Analyzing a depletion MOS differential pair with an active c...

Analyzing a depletion MOS differential pair with an active current source The parameters of the depletion MOS differential pair in Fig. 9.22 are R_{ SS }=50 k \Omega, I_{ Q }=10 mA , V_{ DD }=30 V , \text { and } R_{ D }=5 k \Omega . The depletion MOSFETs are identical and have V_{ p }=-4 V \text { and } I_{ DSS }=20 mA \text {. Assume } V_{ M }=100 V .

(a) Calculate the DC drain currents through the MOSFETs if v_{ id }=10 mV .
(b) Assuming I_{ D 1}=I_{ D 2}, \text { calculate } A_{ d }, A_{ c } , and CMRR; R_{ id } \text { and } R_{ ic } ; and the small-signal output voltage if v_{ g 1}=10 mV \text { and } v_{ g 2}=20 mV .
(c) Find the drain voltage V_{ D } .

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) For v_{ id }=10 mV , Eq. (9.72) gives the DC drain current i_{ D 1} \text { for transistor } M _{1} as

 

i_{D1}=\frac{I_Q}{2} +\frac{I_Q}{2} \left(\frac{v_{id}}{V_p} \right) \left[2\left(\frac{I_{DSS}}{I_Q} \right) -\left(\frac{v_{id}}{V_p} \right)^2 \left(\frac{I_{DSS}}{I_Q} \right) ^2\right]^{1/2}                                          (9.72)

 

\begin{aligned}&i_{ D 1}=\frac{10 m }{2}\left\{1+\frac{100 m }{-4}\left[2\left(\frac{20 m }{10 m }\right)-\left(\frac{100 m }{-4}\right)^{2}\left(\frac{20 m }{10 m }\right)^{2}\right]^{1 / 2}\right\}=5.25 mA \\&i_{ D 2}=I_{ Q }-i_{ D 1}=10 mA -5.25 mA =4.75 mA\end{aligned}

 

(b) We know that I_{ D 1}=I_{ D 2}=I_{ Q } / 2=10 mA / 2=5 mA . From Eq. (9.78),

\begin{aligned}g_{ m } &=\left|-\frac{2 I_{ DSS }}{V_{ p }}\left(1-\frac{V_{ GS }}{V_{ p }}\right)\right| \\&=\frac{2}{\left|V_{ p }\right|}\left[\left|I_{ D } I_{ DSS }\right|\right]^{1 / 2}\end{aligned}                             (9.78)

 

\begin{aligned}&g_{ m }=\frac{2\left[\left|I_{ D 1} I_{ DSS }\right|\right]^{1 / 2}}{\left|V_{ p }\right|}=\left(\frac{2}{4}\right) \times 2 \overline{5 mA \times 20 mA }=5 mA / V \\&r_{ o 1}=\frac{V_{ M }}{I_{ D }}=\frac{100}{5 m }=20 k \Omega\end{aligned}

 

From Eq. (9.79), the single-ended differential voltage gain A_{ d } is

A_{ d }=-g_{ m }\left(R_{ D } \| r_{ o 1}\right)                                 (9.79)

 

A_{ d }=-g_{ m }\left(R_{ D } \| r_{ o 1}\right)=-5 m \times(5 k \| 20 k )=-20 V / V

From Eq. (9.80), the single-ended common-mode voltage gain A_{ C } is

 

A_{ c }=\frac{-g_{ m } R_{ D }}{1+g_{ m } 2 R_{ SS }}                                       (9.80)

 

A_{ c }=\frac{-g_{ m } R_{ D }}{1+g_{ m } 2 R_{ SS }}=\frac{-5 m \times 5 k }{1+(5 m \times 2 \times 50 k )}=-0.0399 V / V

 

Thus, CMRR =\left|A_{ d } / A_{ c }\right|=20 / 0.0399=501(\text { or } 54 dB ). From Eq. (9.59),

 

R_{ ic }=R_{ id }=\infty                               (9.59)

 

R_{ id }=R_{ ic }=\infty

We know that

v_{ id }=v_{ g 2}-v_{ g 1}=20 mV -10 mV =10 mV

and    v_{ ic }=\frac{v_{ g 1}+v_{ g 2}}{2}=\frac{10 mV +20 mV }{2}=15 mV

 

Using Eq. (9.10), we have

v_o=A_{ d } v_{ id }+A_{ c } v_{ ic }                                 (9.10)

 

v_{ o }=A_{ d } v_{ id }+A_{ c } v_{ ic }=-20 \times 10 mV -0.0399 \times 15 mV =-250.6 mV

 

(c) The DC drain voltage at the drain terminal of a transistor is

V_{ D }=V_{ DD }-I_{ D } R_{ D }=30 V -5 mA \times 5 k \Omega=5 V

 

Thus, for A_{ d }=-20 , the maximum differential voltage will be v_{\text {id }}=5 / 20=250 mV \text {. } Therefore, V_{ DD } must be greater than I_{ D } R_{ D } in order to allow output voltage swing due to the input voltages.

 

Related Answered Questions