Question 9.3.2: Analyzing the Gibbs Energy of a Mixture to Determine Whether...

Analyzing the Gibbs Energy of a Mixture to Determine Whether It Is an Ideal Mixture

Experimentally (as will be described in Sec. 10.2) it has been found that the Gibbs energy for a certain binary mixture has the form

\underline{G}_{\operatorname{mix}}(T, P, \underline{x})=\sum_{ i =1}^{2} x_{ i } \underline{G}_{ i }(T, P)+R T \sum_{ i =1}^{2} x_{ i } \ln x_{ i }+a x_{1} x_{2} (**)

where a is a constant. Determine whether this mixture is an ideal mixture.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

For an ideal mixture Eqs. 9.3-1a and b must be satisfied at all conditions. To see if this is so, we start with the relation between the Gibbs energy and volume and use the equation above to obtain

 

\bar{H}_{ i }^{ IM }(T, P, \underline{x})=\underline{H}_{ i }(T, P) (9.3-1a)

 

\underline{V}_{\operatorname{mix}}=\left(\frac{\partial \underline{G}_{ mix }}{\partial P}\right)_{T, N}=\sum_{ i =1}^{2} x_{ i }\left(\frac{\partial \underline{G}_{ i }}{\partial P}\right)_{T, N}=\sum x_{ i } \underline{V}_{ i }(T, P)

 

Therefore,

 

\bar{V}_{1}(T, P)=\left.\frac{\partial\left(N \underline{V}_{\text {mix }}\right)}{\partial N_{1}}\right|_{T, N_{2}}=\frac{\partial}{\partial N_{1}}\left(N_{1} \underline{V}_{1}(T, P)+N_{2} \underline{V}_{2}(T, P)\right)_{T, N_{2}}=\underline{V}_{1}(T, P)

 

Similarly, \bar{V}_{2}(T, P)=\underline{V}_{2}(T, P), so Eq. 9.3-1b is satisfied. We now move on to Eq. 9.3-1a by starting with

 

\bar{V}_{ i }^{ IM }(T, P, \underline{x})=\underline{V}_{ i }(T, P) (9.3-1b)

 

\left.\frac{\partial}{\partial T}\right|_{P}\left(\frac{\underline{G}}{T}\right)=\frac{1}{T}\left(\frac{\partial \underline{G}}{\partial T}\right)_{P}-\frac{\underline{G}}{T^{2}}=\frac{1}{T}(-S)-\frac{(\underline{H}-T \underline{S})}{T^{2}}=-\frac{\underline{H}}{T^{2}}

 

or

 

\underline{H}=-\left.T^{2} \frac{\partial}{\partial T}\right|_{P}\left(\frac{\underline{G}}{T}\right)

 

Therefore,

 

\begin{aligned}\underline{H}_{\text {mix }} &=-\left.T^{2} \frac{\partial}{\partial T}\right|_{P}\left[\sum x_{ i } \frac{G_{ i }}{T}+R \sum x_{ i } \ln x_{ i }+\frac{a}{T} x_{1} x_{2}\right] \\&=-T^{2}\left[\sum x_{ i }\left(-\frac{\underline{H}_{ i }}{T^{2}}\right)-\frac{a}{T^{2}} x_{1} x_{2}\right]=\sum x_{ i } \underline{H}_{ i }+a x_{1} x_{2}\end{aligned}

 

Then

 

\begin{aligned}\bar{H}_{1}(T, P, \underline{x}) &=\left.\frac{\partial}{\partial N_{1}}\right|_{T, P, N_{2}} N \underline{H}_{ mix }=\left.\frac{\partial}{\partial N_{1}}\right|_{T, P, N_{2}}\left(N_{1} \underline{H}_{1}+N_{2} \underline{H}_{2}+\frac{a N_{1} N_{2}}{N_{1}+N_{2}}\right) \\&=\underline{H}_{1}(T, P)+a\left[\frac{N_{2}}{N_{1}+N_{2}}-\frac{N_{1} N_{2}}{\left(N_{1}+N_{2}\right)^{2}}\right] \\&=\underline{H}_{1}(T, P)+a\left(x_{2}-x_{1} x_{2}\right)=\underline{H}_{1}(T, P)+a x_{2}\left(1-x_{1}\right) \\&=\underline{H}_{1}(T, P)+a x_{2}^{2}\end{aligned}

 

Similarly, \bar{H}_{2}(T, P, \underline{x})=\underline{H}_{2}(T, P)+a x_{1}^{2}.

Therefore, Eq. 9.3-1a is not satisfied, and the mixture described by Eq. ** above is not an ideal mixture.

Comment

Clearly, for this mixture \underline{G}^{ ex }=a x_{1} x_{2} \text { and } \underline{A}^{ ex }=a x_{1} x_{2}. Since the excess Gibbs energies of mixing are not zero, this also shows that the mixture cannot be ideal.

Related Answered Questions