Question 8.12: Apply the general definition of the battery potential, Δφ= -...

Apply the general definition of the battery potential,

\Delta \varphi = - \frac{1}{zF_F} \sum\limits_{A}{\nu _{\alpha A} }\mu _A .

to the Daniell cell (§ 8.7.4) and show that it yields relation (8.108). Show that the battery potential can be written as,

\Delta \varphi ≡ \varphi ^{(+)}_e - \varphi ^{(-)}_e = \frac{1}{2 F_F} \biggl(\Bigl(\mu ^{(+)}_{Cu^{2+}} - \mu _{Cu}\Bigr)- \Bigl(\mu ^{(-)}_{Zn^{2+}} - \mu _{Zn}\Bigr) \biggr) .    (8.108)

\Delta \varphi = \frac{A_α}{z F_F} = - \frac{Δ_α G}{z F_F} = - \frac{Δ_α H- T Δ_αS}{z F_F} .

where

\Delta _\alpha H = \sum\limits_{A}{\nu _{\alpha A} }h _A       and      \Delta _\alpha S = \sum\limits_{A}{\nu _{\alpha A} }s _A .

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Apart from the electrons which are produced at the anode and consumed at the cathode inside the Daniell cell, there are four other substances in this electrochemical reactions, i.e. Cu^{2+}, Cu, Zn^{2+} and Zn. Thus, the battery potential is given by,

\Delta \varphi = – \frac{1}{zF_F} \sum\limits_{A}{\nu _{\alpha A} }\mu _A .

= – \frac{1}{zF_F} (ν_{+Cu^{2+} μ_{Cu^{2+}}} + ν_{+Cu μ_{Cu} }+ ν_{−Zn^{2+} μ_{Zn^{2+}}} + ν_{−Zn μ_{Zn}}) .

where the + sign labels the reduction occurring at the cathode and the − sign labels the oxidation occurring at the anode. According to the redox equations at equilibrium (8.96) and (8.95), the stoichiometric coefficients ν_{+Cu^{2+}} =−1, ν_{+Cu} =1, ν_{−Zn^{2+}} =1, ν_{−Zn} =−1 , and the electrovalence is z = 2. Thus, the battery potential reduces to relation (8.108),

\bar{\mu }_{Cu} – \bar{\mu }_{Cu^{2+}} -2 \bar{\mu }_e = 0  .  (8.96)

– \bar{\mu }_{Zn} + \bar{\mu }_{Zn^{2+}} +2 \bar{\mu }_e = 0 .  (8.95).

\Delta \varphi ≡ \varphi ^{(+)}_e – \varphi ^{(-)}_e = \frac{1}{2 F_F} \biggl(\Bigl(\mu ^{(+)}_{Cu^{2+}} – \mu _{Cu}\Bigr)- \Bigl(\mu ^{(-)}_{Zn^{2+}} – \mu _{Zn}\Bigr) \biggr) .    (8.108)

\Delta \varphi =  \frac{1}{2 F_F}\biggl((\mu _{Cu^{2+}} – \mu _{Cu}) – (\mu _{Zn^{2+}} – \mu _{Zn}) \biggr) .

According to relation (8.18),

A_α = − \sum\limits_{A=1}^{r}{\mu _A \nu _{\alpha A}} .    (8.18)

\Delta \varphi = – \frac{1}{z F_F} \sum\limits_{A}{ \nu _{\alpha A }\mu _A} = \frac{A_α}{z F_F} .

In view of relation (8.16),

\Delta _\alpha G ≡ \frac{\partial G}{\partial \xi _\alpha } = \sum\limits_{A=1}^{r}{\mu _A \nu _{\alpha A}} .      (8.16)

\Delta \varphi = – \frac{1}{z F_F} \sum\limits_{A}{ \nu _{\alpha A }\mu _A} = -\frac{Δ_αG}{z F_F} .

According to relation (8.51),

μ_A = h_A − T s_A .                  (8.51)

\Delta \varphi = – \frac{1}{z F_F} \sum\limits_{A}{ \nu _{\alpha A }\mu _A} = – \sum\limits_{A}{ν_{αA} (h_A − T s_A)} = – \frac{Δ_αH − T Δ_αS}{z F_F} .

Related Answered Questions