Question 9.3.8: Are the matrices U = [1 -i i 1] and V = [1/√3(1 + i) 1/√6(1 ...

Are the matrices U = \left [ \begin{matrix} 1 & -i \\ i & 1 \end{matrix} \right ] and V = \left [ \begin{matrix} \frac{1}{\sqrt{3} } (1 + i) & \frac{1}{\sqrt{6} } (1 + i) \\ - \frac{1}{\sqrt{3} } i & \frac{2}{\sqrt{6} } i \end{matrix} \right ] unitary?

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Observe that

\left\langle \left [ \begin{matrix} 1 \\ i \end{matrix} \right ] , \left [ \begin{matrix} 1 \\ i \end{matrix} \right ] \right\rangle = \overline{\left [ \begin{matrix} 1 \\ i \end{matrix} \right ]} \cdot \left [ \begin{matrix} 1 \\ i \end{matrix} \right ] = \left [ \begin{matrix} 1 \\ -i \end{matrix} \right ] \cdot \left [ \begin{matrix} 1 \\ i \end{matrix} \right ] = 1(1) + (−i)i = 2

Hence, \left [ \begin{matrix} 1 \\ i \end{matrix} \right ] is not a unit vector. Thus, U is not unitary.

For V, we have V^{∗} = \left [ \begin{matrix} \frac{1}{\sqrt{3} } (1 – i) & \frac{1}{\sqrt{3} } i \\ \frac{1}{\sqrt{6} } (1 – i) & – \frac{2}{\sqrt{6} } i \end{matrix} \right ] , so

V^{∗}V = \left [ \begin{matrix} \frac{1} {3} (2 + 1) & \frac{1} {3 \sqrt{2} } (2 – 2) \\ \frac{1} {3 \sqrt{2} } (2 – 2) & \frac{1}{6} (2 + 4) \end{matrix} \right ] = \left [ \begin{matrix} 1 & 0 \\ 0 & 1 \end{matrix} \right ]

Thus, V is unitary.

 

Related Answered Questions