(a)–(b) In order to determine the pressure and velocity at points a and b and the magnitude of the freely available head to be extracted by the turbine, the energy equation is applied between points 1 and a, between points a and b, and between points b and 2, assuming z_{a} = z_{b} and the datum is at point 2. Furthermore, the velocities at points a and b are related by application of the continuity equation between points a and b as follows:
P_{1}: = 0 \frac{N}{m^{2}} V_{1}: = 0 \frac{m}{sec} Z_{1}: = 32 m Z_{a}: = 2 m Z_{b}: = 2 m
P_{2}: = 0 \frac{N}{m^{2}} V_{2}: = 0 \frac{m}{sec} Z_{2}: = 0 m
D_{a}: = 0.9 m A_{a}: = \frac{\pi . D^{2}_{a} }{4} = 0.636 m^{2}
D_{b}: = 0.9 m A_{b}: = \frac{\pi . D^{2}_{b} }{4} = 0.636 m^{2}
k_{ent}: = 0.5 k_{diffuser}: = 0.5 f: = 0.15 L: = 150 m
\rho : = 998 \frac{kg}{m^{3}} g: = 9.81 \frac{m}{sec^{2}} \gamma : = \rho .g = 9.79 \times 10^{3} \frac{kg}{m^{2}s^{2}}
Guess value: P_{a}: = 2 \times 10^{3} \frac{N}{m^{2}} P_{b}: = 1 \times 10^{3} \frac{N}{m^{2}} V_{a}: = 1 \frac{m}{sec}
V_{b}: = 2 \frac{m}{sec} h_{fmaj}: = 1 m h_{fent}: = 1 m h_{turbine}: = 20 m
h_{fdiffuser}: = 1 m
Given
\frac{P_{1}}{\gamma } + Z_{1} + \frac{V^{2}_{1} }{2.g} – h_{fmaj} – h_{fent} = \frac{P_{a}}{\gamma } + Z_{a} + \frac{V^{2}_{a} }{2.g}
\frac{P_{a}}{\gamma } + Z_{a} + \frac{V^{2}_{a} }{2.g} – h_{turbine} = \frac{P_{b}}{\gamma } + Z_{b} + \frac{V^{2}_{b} }{2.g}
\frac{P_{b}}{\gamma } + Z_{b} + \frac{V^{2}_{b} }{2.g} – h_{fdiffuser} = \frac{P_{2}}{\gamma } + Z_{2} + \frac{V^{2}_{2} }{2.g}
h_{fmaj}= f \frac{L}{D_{a}} \frac{V^{2}_{a}}{2.g} h_{fent} = k_{ent} \frac{V^{2}_{a}}{2.g} V_{a}.A_{a} = V_{b}.A_{b}
h_{fdiffuser} = k_{diffuser} \frac{V^{2}_{b}}{2.g}
\left ( \begin{matrix} P_{a} \\V_{a} \\h_{turbine} \\ P_{b} \\ V_{b} \\ h_{fmaj} \\ h_{fent} \\ h_{fdiffuser} \end{matrix} \right ): = Find (P_{a}, V_{a}, h_{turbine}, P_{b}, V_{b}, h_{fmaj}, h_{fent}, h_{fdiffuser})
P_{a}: = 1.639 \times 10^{5} \frac{N}{m^{2}} V_{a}: = 3.135 \frac{m}{sec} h_{turbine}: = 18.977 m
P_{b}: = -2.203 \times 10^{4} \frac{N}{m^{2}} V_{b}: = 3.135 \frac{m}{sec}
h_{fmaj}: = 12.522 m h_{fent}: = 0.25 m h_{fdiffuser}: = 0.25 m
Where
\frac{P_{a}}{\gamma } = 16.727 m \frac{P_{b}}{\gamma } = -2.25 m h_{fdiffuser}: = \frac{P_{a}}{\gamma } – \frac{P_{b}}{\gamma } = 18.977 m
(c)In order to determine the magnitude of the freely available discharge to be extracted by the turbine, the continuity equation is applied at point a as follows:
Q_{a}: = V_{a}.A_{a} = 1.997 \frac{m^{3}}{s}
(d) In order to determine the magnitude of the freely available hydraulic power to be extracted by the turbine, Equation 4.187 h_{turbine} = \frac{(P_{t})_{in}}{\gamma Q} = \frac{(P_{t})_{out}/\eta _{turbine}}{\gamma Q} = \frac{wT_{shaft,out}/\eta _{turbine}}{\gamma Q} is applied as follows:
Q: = Q_{a} = 1.997 \frac{m^{3}}{s}
P_{tin}:= \gamma .Q. h_{turbine}= 370.529 kW
(e) The EGL and HGL are illustrated in Figure EP 4.24.
(f) Assuming a typical turbine efficiency of 90%, the freely generated shaft power output by the turbine is computed by applying Equation 4.167 \eta _{turbine}= \frac{shaft power}{hydraulic power} = \frac{\overset{\cdot }{W}_{turbine} }{(\overset{\cdot }{W}_{turbine} )_{e}} = \frac{\overset{\cdot }{W}_{shaft,out} }{(\overset{\cdot }{W}_{turbine} )_{e}} = \frac{wT_shaft,out}{(\overset{\cdot }{W}_{turbine} )_{e}} = \frac{P_{out of turbine}}{P_{in of turbine}} = \frac{(P_{t})_{out}}{(P_{t})_{in}} as follows:
\eta _{turbine}: = 0.90
Guess value: P_{tout}: = 350 kW
Given
\eta _{turbine} =\frac{ P_{tout}}{P_{tin}}
P_{tout}: = Find (P_{tout}) = 333.476 kW
(g) Assuming a typical generator efficiency of 85%, the freely generated electric power output by the generator is computed by applying Equation 4.174 \eta _{generator}= \frac{electricalpoweroutputfromgenerator}{shaftpowerinputfromturbine} = \frac{\overset{\cdot }{W}_{elect,out} }{(\overset{\cdot }{W}_{shaft,in} )_{e}} = \frac{P_{out of gen}}{P_{in to gen}} = \frac{(P_{g})_{out}}{(P_{g})_{in}} as follows:
P_{gin}: = P_{tout} = 333.476 kW \eta _{ generator} : = 0.85
Guess value: P_{gout}: = 350 kW
Given
\eta _{generator} = \frac{P_{gout}}{P_{gin}}
P_{gout}: = Find (P_{gout}) = 183.455 kW
(h) The resulting overall turbine–generator system efficiency is computed by applying Equation 4.176 \eta _{turbine – generator}= \frac{electricalpower}{hydraulic power} = \frac{\overset{\cdot }{W}_{elect,out} }{(\overset{\cdot }{W}_{turbine} )_{e}} = \frac{(P_{g})_{out}}{(P_{t})_{in}} = \eta _{turbine} \eta _{generator} as follows:
\eta _{ turbinegenerator}: = \frac{P_{gout}}{P_{tin}} = 0.765
\eta _{ turbinegenerator}: = \eta _{ turbine}.\eta _{generator}= 0.765