Question 10.8: As noted earlier in this chapter, the primary function of th...

As noted earlier in this chapter, the primary function of the lungs is to facilitate gas exchange between the atmosphere and the blood. Toward this end, the capillary system in the lungs is very different than that found elsewhere. Conforming to the alveolar geometry (Fig. 10.3), capillary blood flow in the lungs is better described as a sheet flow rather than a tube flow; that is, the blood flows within the thin planar walls of the alveoli, which appear as parallel membranes separated by hexagonally positioned posts. Fung and his colleagues sought to quantify the pressure–flow relation in this sheet flow and began with a nondimensionalization. Here, let us perform a similar procedure and compare to that reported by Fung (1993).

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Fung considered the pressure drop Δp\Delta p within a pulmonary capillary to depend on the density and viscosity of the blood (ρ,μ),(\rho , \mu), mean velocity U, circular frequency of oscillation ω,\omega, sheet thickness h and width w, post diameter ε\varepsilon and separation distance a, angle between the mean flow and post alignment θ,\theta , the hematocrit H and red blood cell diameter Dc,D_{c}, the elastic modulus of the red blood cell Ec,E_{c}, and a ratio between the vascular space and tissue volume (VSTR). Consistent with Step 1 in our Buckingham Pi approach, we specify

              Δp=g(ρ,μ,U,ω,h,w,ε,a,θ,H,Dc,Ec,VSTR).                            \Delta p=g(\rho ,\mu ,U,\omega ,h,w,\varepsilon ,a,\theta ,H,D_{c},E_{c},VSTR).

It is easy to see that appropriate fundamental units are L, T, andM, where (Step 2)

[Δp]=L1T2M1,    [ω]=L0T1M0,     [a]=L1T0M0,\left[\Delta p\right]=L^{-1}T^{-2}M^{1},       \left[\omega \right]=L^{0} T^{-1}M^{0},         \left[a\right] =L^{1}T^{0}M^{0},

 

[ρ]=L3T0M1,     [h]=L1T0M0,       [Dc]=L1T0M0,\left[\rho \right]=L^{-3}T^{0}M^{1},         \left[h\right]=L^{1}T^{0}M^{0},             \left[D_{c}\right]=L^{1}T^{0}M^{0},

 

[μ]=L1T1M1,    [w]=L1T0M0,      [Ec]=L1T2M1,\left[\mu \right]=L^{-1}T^{-1}M^{1},        \left[w\right]=L^{1}T^{0}M^{0},           \left[E_{c}\right]=L^{-1}T^{-2}M^{1},

 

[U]=L1T1M0,    [ε]=L1T0M0,\left[U\right]=L^{1}T^{-1}M^{0},       \left[\varepsilon \right]=L^{1}T^{0}M^{0},

and, of course, [θ]=[H]=[VSTR]=1.\left[\theta \right]=\left[H\right]=\left[VSTR\right]=1. If we assign length, time, and mass scales (Step 3) as

           Ls=h,        Ts=hU,        Ms=(ρhw)h,                      L_{s}=h,                T_{s}=\frac{h}{U},                M_{s}=(\rho hw)h,

Control Volume and Semi-empirical Methods then (Step 4) we can list the computed Pi groups:

πp=ΔpρU2(hw),              πw=wh,\pi _{p}=\frac{\Delta p}{\rho U^{2}}\left(\frac{h}{w} \right),                           \pi _{w}=\frac{w}{h},

 

πp=hw,                             πε=εh,\pi _{p}=\frac{h}{w},                                                          \pi _{\varepsilon }=\frac{\varepsilon }{h},

 

πμ=μρUw=μρUh(hw),         πa=ah=aε(εh),\pi _{\mu }=\frac{\mu }{\rho Uw}=\frac{\mu }{\rho Uh}\left(\frac{h}{w} \right),                  \pi _{a}=\frac{a}{h}=\frac{a}{\varepsilon }\left(\frac{\varepsilon }{h} \right),

 

πU=1,                                          πDc=Dch,\pi _{U}=1,                                                                                   \pi _{D_{c}}=\frac{D_{c}}{h},

 

πω=ωUh,                  πEc=EcρU2(hω),\pi _{\omega }=\frac{\omega }{U}h,                                    \pi _{E_{c}}=\frac{E_{c}}{\rho U^{2}}\left(\frac{h}{\omega } \right),

 

πh=1,\pi _{h}=1,

and, thus (Step 5), we can express the original equation as

  ΔpρU2(hw)=g~(hw,Re,wh,εh,ah,Dch,ωUh,EcρU2(hω),θ,H,VSTR),    \frac{\Delta p}{\rho U^{2}}\left(\frac{h}{w} \right)=\widetilde{g}\left(\frac{h}{w},Re,\frac{w}{h},\frac{\varepsilon }{h},\frac{a}{h},\frac{D_{c}}{h},\frac{\omega }{U}h,\frac{E{_{c}}}{\rho U^{2}}\left(\frac{h}{\omega } \right) , \theta , H, VSTR \right),

where the Reynolds’ number is Re=ρUh/μ.Re=\rho Uh/\mu . Hence, Buckingham Pi reduced the number of independent variables from 13 to 10, a slight improvement. Fung (1993) actually chose a few different, equivalent nondimensional parameters; they are related to the present ones via (by multiplying by unity appropriately)

           ph2μU=(Δp/h)h2μU=ΔphμU(ρUwρUw)=ΔpρU2(hw)(ρUwμ),                      \frac{\triangledown ph^{2}}{\mu U}=\frac{(\Delta p/h)h^{2}}{\mu U}=\frac{\Delta ph}{\mu U}\left(\frac{\rho Uw}{\rho Uw} \right)=\frac{\Delta p}{\rho U^{2}}\left(\frac{h}{w} \right)\left(\frac{\rho Uw}{\mu } \right),

 

                μUEch=μUEch(ρU2ρU2)(ww)=μρUw(ρU2Ec)(wh),                                \frac{\mu U}{E_{c}h}=\frac{\mu U}{E_{c}h}\left(\frac{\rho U^{2}}{\rho U^{2}} \right)\left(\frac{w}{w} \right)=\frac{\mu }{\rho Uw}\left(\frac{\rho U^{2}}{E_{c}} \right)\left(\frac{w}{h} \right),

 

                      h2ωρ4μ=12(ωUh)(ρUwμ)(hw),                                           \sqrt{\frac{h^{2}\omega \rho }{4\mu } }=\frac{1}{2}\sqrt{\left(\frac{\omega }{U}h \right)\left(\frac{\rho Uw}{\mu } \right)\left(\frac{h}{w} \right) },

which is to say, our current Pi groups differ from Fung’s only through the Reynolds’ number ρUh/μ\rho Uh/\mu and the term h/w. It is interesting that experiments revealed that the Reynolds’ number Re and Womersley’s number

                         h2ωρμ                                                  \frac{h}{2}\sqrt{\frac{\omega \rho }{\mu } }

are both less than unity and thus negligible in this sheet flow. Note, too, that Fung’s parameter μU/Ech\mu U/E_{c}h is essentially the ratio of the shear stress in a Couette flow between parallel plates (cf. Example 9.2 of Chap. 9) to the modulus of the red blood cell (RBC), which was interpreted as a RBC membrane shear strain despite the flow not being Couette. Experiments suggested further that, with a minus sign accounting for the pressure gradient being opposite the pressure drop,

        ph2μU=G1(Dch,μ0UEch,H)G2(wh)f(hε,εa,θ, VSTR),                \frac{\triangledown ph^{2}}{\mu U}=-G_{1}\left(\frac{D_{c}}{h},\frac{\mu _{0}U}{E_{c}h},H \right)G_{2}\left(\frac{w}{h} \right)f\left(\frac{h}{\varepsilon },\frac{\varepsilon }{a}, \theta,  VSTR \right),
where
                     μG1(Dch,μ0UEch,H)μa                                         \mu G_{1}\left(\frac{D_{c}}{h},\frac{\mu _{0}U}{E_{c}h},H \right)\equiv \mu _{a}

was taken to be the apparent viscosity, with the form

                    μa=μ[1+c1(Dch)H+c2(Dch)H2],                                       \mu _{a}=\mu \left[1+c_{1}\left(\frac{D_{c}}{h} \right)H+c_{2}\left(\frac{D_{c}}{h} \right)H^{2} \right],

the effect of  μ0U/Ech\mu _{0}U/E_{c}h being yet unexplored. The function G2G_{2} was found to be

                              G2(wh)=1210.63(h/w)12,                                                           G_{2}\left(\frac{w}{h} \right)=\frac{12}{1-0.63(h/w)}\approx 12,

whereas the function f was called a geometric friction factor It was found experimentally to vary nearly linearly with h/εh/\varepsilon with values of ff from 1.5 to 5 for h/εh/\varepsilon from 1 to 5, with values of VSTR91,h7.4 μm,ε4 μm,VSTR \sim 91,h\sim 7.4  \mu m,\varepsilon \sim 4  \mu m, and a12 μm,a\sim 12  \mu m, and a 12μm,\sim 12 \mu m, f would equal 1 in the absence of posts. Hence, the semi-empirical relation reduced to

                      p12μaUh2f(hε,εa,θ,VSTR).                                            \triangledown p\cong -\frac{12\mu _{a}U}{h^{2}}f\left(\frac{h}{\varepsilon },\frac{\varepsilon }{a},\theta , VSTR \right).

Because shear flow is two-dimensional, in general, Fung and colleagues thus considered Control Volume and Semi-empirical Methods

       px=12μaUh2fx(hε,εa,θ,VSTR)=12μaUh2fx,              \frac{\partial p}{\partial x}=-\frac{12\mu _{a}U}{h^{2}}f_{x}\left(\frac{h}{\varepsilon },\frac{\varepsilon }{a},\theta ,VSTR \right)=-\frac{12\mu _{a}U}{h^{2}}f_{x},

 

         py=12μaVh2fy(hε,εa,θ,VSTR)=12μaVh2fy,                  \frac{\partial p}{\partial y}=-\frac{12\mu _{a}V}{h^{2}}f_{y}\left(\frac{h}{\varepsilon },\frac{\varepsilon }{a},\theta ,VSTR \right)=-\frac{12\mu _{a}V}{h^{2}}f_{y},

where U and V are mean velocities in the x and y directions, respectively, and fxfy2.5.f_{x}\sim f_{y}\sim 2.5.  In general, the mean values of 2-D velocities within the capillaries are

       U=h212μafx(px),         V=h212μafy(py).              U=-\frac{h^{2}}{12\mu _{a}f_{x}}\left(\frac{\partial p}{\partial x} \right),                  V=-\frac{h^{2}}{12\mu _{a}f_{y}}\left(\frac{\partial p}{\partial y} \right).

Finally, Fung and colleagues suggested that

                               h=h0+αΔp                                                              h=h_{0}+\alpha \Delta p

based on morphometric data, with h0=4.28 μmh_{0}=4.28  \mu m in cat lung and 3.5μm3.5 \mu m in human lung, α=0.219  μm/cm  H2Oα=0.219   μm/cm   H_{2}O in cat lung for a Δp10  cm  H2O,\Delta p\sim 10    cm   H_{2}O, and α=0.127  μm/cm H2Oα=0.127   μm/cm  H_{2}O in human lung for a Δp10 cm H2O.\Delta p\sim 10  cm  H_{2}O. For more details, see Fung (1984, 1993). The take-home message here is simply that Buckingham Pi can often be used advantageously to guide empirical studies, particularly those associated with complex flows as in the pulmonary capillaries.

Related Answered Questions

Experimentalists seek to design tests that are the...
Again, we must design an appropriate experiment. C...