Question 20.6: Assume the data of Example 20.5 for a pair of worm gears. De...

Assume the data of Example 20.5 for a pair of worm gears. Determine the power transmitting capacity based on wear strength.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

 Given n1=1200rpmz1=1z2=30 teeth  \text { Given } \quad n_{1}=1200 rpm \quad z_{1}=1 \quad z_{2}=30 \text { teeth } .

q = 10 m = 10 mm
Step I Permissible torque on worm wheel
For the given pair of worm gears,

d2=300mm d_{2}=300 mm .

 For (q=10) and (z1=1), the zone factor Yz from  \text { For }(q=10) \text { and }\left(z_{1}=1\right), \text { the zone factor } Y_{z} \text { from } .

Table 20.4 is given by

Table 20.4 Values of the zone factor Yz Y_{z}

q = 20 q = 16 q = 12 q = 10 q = 9 q = 8 z1z_{1}
1.508 1.374 1.202 1.143 1.128 1.084 1
1.575 1.418 1.280 1.231 1.214 1.114 2
1.798 1.634 1.515 1.460 1.380 1.204 4

Yz=1.143 Y_{z}=1.143 .

For case-hardened carbon steel 14C6 (Table 20.3),

Table 20.3 Values of the Surface Stress Factor Sc S_{c}

Values of Sc S_{c} when running with Materials
D C B A
1.55 0.92 0.85 A Phosphor-bronze (centrifugally cast)
1.27 0.70 0.63 Phosphor-bronze
(sand cast and chilled)
1.06 0.54 0.47 Phosphor-bronze (sand-cast)
1.1 B 0.4% carbon steel-normalized (40C8)
1.55 C 0.55% carbon steel-normalized (55C8)
4.93 D Case-hardened carbon steel
(10C4 , 14C6)
5.41 Case-hardened alloy steel
(16Ni80Cr60 ,20Ni2Mo25)
6.19 Nickel–chromium steel
( 13Ni3Cr80 , 15Ni4Cr1 )

Sc1=4.93 S_{c 1}=4.93 .

For centrifugally cast phosphor-bronze,

Sc2=1.55 S_{c 2}=1.55 .

From Eq. (20.33),

Vs=πd1n160000cosγ V_{s}=\frac{\pi d_{1} n_{1}}{60000 \cos \gamma}             (20.33).

Vs=πd1n160000cosγ=π(10×10)(1200)60000cos(5.71)=6.315m/s V_{s}=\frac{\pi d_{1} n_{1}}{60000 \cos \gamma}=\frac{\pi(10 \times 10)(1200)}{60000 \cos (5.71)}=6.315 m / s .

 For Vs=6.315m/s and n1=1200rpm \text { For } V_{s}=6.315 m / s \text { and } n_{1}=1200 rpm

(Fig. 20.15),

Xc1=0.112 X_{c 1}=0.112 .

 For Vs=6.315m/s and n1=40rpm \text { For } V_{s}=6.315 m / s \quad \text { and } \quad n_{1}=40 rpm .

Xc2=0.26 X_{c 2}=0.26 .

From Eqs (20.38) and (20.39),

(Mt)3=18.64Xc1Sc1Yz(d2)1.8m \left(M_{t}\right)_{3}=18.64 X_{c 1} S_{c 1} Y _{ z }\left(d_{2}\right)^{1.8} m                 (20.38).

(Mt)4=18.64Xc2Sc2Yz(d2)1.8m \left(M_{t}\right)_{4}=18.64 X_{c 2} S_{c 2} Y _{ z }\left(d_{2}\right)^{1.8} m                   (20.39).

(Mt)3=18.64Xc1Sc1Yz(d2)1.8m \left(M_{t}\right)_{3}=18.64 X_{c 1} S_{c 1} Y_{z}\left(d_{2}\right)^{1.8} m

=18.64(0.112)(4.93)(1.143)(300)1.8(10) =18.64(0.112)(4.93)(1.143)(300)^{1.8}(10) .

= 3 383 570.4 N-mm             (a)

(Mt)4=18.64Xc2Sc2Yz(d2)1.8m \left(M_{t}\right)_{4}=18.64 X_{c 2} S_{c 2} Y _{ z }\left(d_{2}\right)^{1.8} m =18.64(0.26)(1.55)(1.143)(300)1.8(10) =18.64(0.26)(1.55)(1.143)(300)^{1.8}(10)

= 2 469 535.8 N-mm                (b)
The lower value of torque on worm wheel is 2 469 535.8 N-mm.
Step II Power transmitting capacity based on wear strength

kW=2πn2(Mt)60×106=2π(40)(2469535.8)60×106=10.34 kW =\frac{2 \pi n_{2}\left(M_{t}\right)}{60 \times 10^{6}}=\frac{2 \pi(40)(2469535.8)}{60 \times 10^{6}}=10.34 .

20.15

Related Answered Questions