Question 11.11: At 10 GHz, a microstrip line has the following parameters: h...

At 10 GHz, a microstrip line has the following parameters:

h=1mm,   w=0.8mm,   \varepsilon_{r}=6.6,  \tan\theta=10^{-4},  \sigma_{c}=5.8\times10^{7} S/m

Calculate the attenuation due to conduction loss and dielectric loss.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The ratio w/h=0.8. Hence from eqs. (11.70):

\varepsilon_{eff}=\frac{(\varepsilon_{r}+1)}{2}+\frac{(\varepsilon_{r}-1)}{2\sqrt{1+12h/w}}

and (11.71):

Z_{o}=\begin{cases}\frac{60}{\sqrt{\varepsilon_{eff}}}\ln\left(\frac{8h}{w}+\frac{w}{4h}\right) & w/h\leq1 \\ \frac{1}{\sqrt{\varepsilon_{eff}}}\frac{120\pi}{[w/h+1.393+0.667\ln(w/h+1.444)]} & w/h\geq1\end{cases}

\varepsilon_{eff}=\frac{7.6}{2}+\frac{5.6}{2}\left(1+\frac{12}{0.8}\right)^{-1/2}=4.5

Z_{o}=\frac{60}{\sqrt{4.5}}+\ln\left(\frac{8}{0.8}+\frac{0.8}{4}\right)=65.69\Omega

The skin resistance of the conductor is

R_{s}=\frac{1}{\sigma_{s}\delta}=\sqrt{\frac{\pi f\mu_{o}}{\sigma_{c}}}=\sqrt{\frac{\pi\times 10\times 10^{9}\times 4\pi\times 10^{-7}}{5.8\times 10^{7}}}=2.609\times 10^{-2}\Omega/m^{2}

Using eq. (11.75):

\alpha_{c}\simeq 8.686\frac{R_{s}}{wZ_{o}}

we obtain the conduction attenuation constant as

\alpha_{c}=8.686\times\frac{2.609\times 10^{-2}}{0.8\times 10^{-3}\times 65.69}=4.31 dB/m

To find the dielectric attenuation constant, we need \lambda:

\lambda=\frac{u}{f}=\frac{c}{f\sqrt{\varepsilon_{eff}}}=\frac{3\times10^{8}}{10\times10^{9}\sqrt{4.5}}=1.414\times10^{-2}m

Applying eq. (11.76):

\alpha_{d}\simeq 27.3\frac{(\varepsilon_{eff}-1)\varepsilon_{r}}{(\varepsilon_{r}-1)\sqrt{\varepsilon_{eff}}} \frac{\tan\theta}{\lambda}

we have

\alpha_{d}=27.3\times \frac{3.5\times 6.6\times 10^{-4}}{5.6\times \sqrt{4.5}\times 1.414\times 10^{-2}}=0.3754 dB/m

Related Answered Questions