Question 12.91: At a point in a stressed body, the known stresses are σx = 4...

At a point in a stressed body, the known stresses are \sigma_{x} = 40 MPa (T), \sigma_{y} = 20 MPa (C), \sigma_{z} = 20 MPa (T), \tau_{x y} = +40 MPa, \tau_{yz} = 0, and \tau_{zx} = +30 MPa. Determine:
(a) the normal and shear stresses on a plane whose outward normal is oriented at angles of 40°, 75°, and 54° with the x, y, and z axes, respectively.
(b) the principal stresses and the absolute maximum shear stress at the point.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The known stresses are

\begin{array}{lll}\sigma_{x}=40  MPa & \sigma_{y}=-20  MPa & \sigma_{ z }=20  MPa \\\tau_{x y}=40  MPa & \tau_{y z}=0  MPa & \tau_{z x}=30  MPa\end{array}

(a) The plane of interest is defined by its direction cosines:

l=\cos \left(40^{\circ}\right)=0.7660 \quad m=\cos \left(75^{\circ}\right)=0.2588 \quad n=\cos \left(54^{\circ}\right)=0.5878

The three orthogonal components of the resultant stress are:

\begin{aligned}&S_{x}=\sigma_{x} \cdot l+\tau_{x y} \cdot m+\tau_{z x} \cdot n=(40)(0.7660)+(40)(0.2588)+(30)(0.5878)=58.63  MPa \\&S_{y}=\tau_{x y} \cdot l+\sigma_{y} \cdot m+\tau_{y z} \cdot n=(40)(0.7660)+(-20)(0.2588)+(0)(0.5878)=25.47  MPa \\&S_{z}=\tau_{z x} \cdot l+\tau_{y z} \cdot m+\sigma_{z} \cdot n=(30)(0.7660)+(0)(0.2588)+(20)(0.5878)=34.74  MPa\end{aligned}

The normal component \sigma_{n} of the resultant stress is

\begin{aligned}\sigma_{n} &=S_{x} \cdot l+S_{y} \cdot m+S_{z} \cdot n \\&=(58.63)(0.7660)+(25.47)(0.2588)+(34.74)(0.5878) \\&=71.92  MPa =71.9  MPa ( T )\end{aligned}

The shear stress \tau_{n t} on the oblique plane can be obtained from the relation  S^{2}=\sigma_{n}^{2}+\tau_{n t}^{2}.

S^{2}=S_{x}^{2}+S_{y}^{2}+S_{z}^{2}=(58.63)^{2}+(25.47)^{2}+(34.74)^{2}=5,292.40

and thus;

\tau_{n t}=\sqrt{\left(S^{2}-\sigma_{n}^{2}\right)}=\sqrt{5,292.40-(71.92)^{2}}=10.95  MPa

 

(b) The principal stresses can be obtained from the roots of the cubic equation [Eq. (12.27)]

\sigma_{p}^{3}-I_{1} \sigma_{p}^{2}+I_{2} \sigma_{p}-I_{3}=0

The three invariants have values of

\begin{aligned}I_{1} &=\sigma_{x}+\sigma_{y}+\sigma_{z} \\&=(40)+(-20)+(20)=40 \\I_{2} &=\sigma_{x} \sigma_{y}+\sigma_{y} \sigma_{z}+\sigma_{z} \sigma_{x}-\tau_{x y}^{2}-\tau_{y z}^{2}-\tau_{z x}^{2} \\&=(40)(-20)+(-20)(20)+(20)(40)-(40)^{2}-(0)^{2}-(30)^{2}=-2,900 \\I_{3} &=\sigma_{x} \sigma_{y} \sigma_{z}+2 \tau_{x y} \tau_{y z} \tau_{z x}-\left(\sigma_{x} \tau_{y z}^{2}+\sigma_{y} \tau_{z x}^{2}+\sigma_{z} \tau_{x y}^{2}\right) \\&=(40)(-20)(20)+2(40)(0)(30)-\left[(40)(0)^{2}+(-20)(30)^{2}+(20)(40)^{2}\right]=-30,000\end{aligned}

therefore, Eq. (12.27) is

\sigma_{p}^{3}-(40) \sigma_{p}^{2}+(-2,900) \sigma_{p}-(-30,000)=0

The three roots of this cubic equation are the principal stresses:

\begin{aligned}\sigma_{p 1} &=73.8  MPa ( T ) \\\sigma_{p 2} &=9.41  MPa ( T ) \\\sigma_{p 3} &=43.2  MPa ( C )\end{aligned}

The absolute maximum shear stress at the point is found from

\tau_{ abs \max }=\frac{\sigma_{\max }-\sigma_{\min }}{2}=\frac{73.8-(-43.2)}{2}=58.5  MPa

 

 

Related Answered Questions