Question 2.4.6: Balance the chemical equation H3PO4 + Mg(OH)2 → Mg3(PO4)2 + ...

Balance the chemical equation

H3PO4 + Mg(OH)2Mg3(PO4)2 +H2OH_{3}PO_{4} \ + \ Mg(OH)_{2} \rightarrow Mg_{3}(PO_{4})_{2} \ + H_{2}O

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

We want to find constants x1,x2,x3,x4x_{1}, x_{2}, x_{3}, x_{4} such that

x1H3PO4 + x2Mg(OH)2x3Mg3(PO4)2 +x4H2Ox_{1}H_{3}PO_{4} \ + \ x_{2}Mg(OH)_{2} \rightarrow x_{3}Mg_{3}(PO_{4})_{2} \ + x_{4}H_{2}O

is balanced. To turn this into a vector equation, we represent the molecules in the equation with the vectors in R4\mathbb{R} ^4 :

 

We get

x1[3140]+x2[2021]=x3[0283]+x4[2010]x_{1}\left [ \begin{matrix} 3 \\ 1 \\ 4 \\ 0 \end{matrix} \right ] + x_{2}\left [ \begin{matrix} 2 \\ 0 \\ 2 \\ 1 \end{matrix} \right ] = x_{3}\left [ \begin{matrix} 0 \\ 2 \\ 8 \\ 3 \end{matrix} \right ] + x_{4} \left [ \begin{matrix} 2 \\ 0 \\ 1 \\ 0 \end{matrix} \right ]

Moving all the terms to the left side and performing the linear combination of vectors, we get the homogeneous system

         3x1+2x22x4=0\ \ \ \ \ \ \ \ \ 3x_{1} + 2x_{2} – 2x_{4} = 0\\

                      x12x3=0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ x_{1} – 2x_{3} = 0 \\

    4x1+2x28x3x4=0 \ \ \ \ 4x_{1} + 2x_{2} – 8x_{3} – x_{4} = 0 \\

                      x23x3=0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ x_{2} – 3x_{3} = 0

Row reducing the corresponding coefficient matrix gives

[3202102042810130][1001/30101/20011/60000]\left [ \begin{matrix} 3 & 2 & 0 & -2 \\ 1 & 0 & -2 & 0 \\ 4 & 2 & -8 & -1 \\ 0 & 1 & -3 & 0 \end{matrix} \right ] \thicksim \left [ \begin{matrix} 1 & 0 & 0 & -1/3 \\ 0 & 1 & 0 & -1/2 \\ 0 & 0 & 1 & -1/6 \\ 0 & 0 & 0 & 0 \end{matrix} \right ]

We find that a vector equation for the solution space is

[x1x2x3x4]=t[1/31/21/61],      tR\left [ \begin{matrix} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \end{matrix} \right ] = t\left [ \begin{matrix} 1/3 \\ 1/2 \\ 1/6 \\ 1 \end{matrix} \right ] , \ \ \ \ \ \ t\in \mathbb{R}

To get the smallest positive integer values, we take t=6t = 6. This gives x1=2,x2=3,x3=1 x_{1} = 2, x_{2} = 3, x_{3} = 1 and x4=6x_{4} = 6.Thus, a balanced chemical equation is

2H3PO4 + 3Mg(OH)2Mg3(PO4)2 +6H2O2H_{3}PO_{4} \ + \ 3Mg(OH)_{2} \rightarrow Mg_{3}(PO_{4})_{2} \ + 6H_{2}O

Related Answered Questions

We use Kirchhoff’s Voltage Law on each of the four...