Question 2.4.7: Balance the chemical equation (NH4)3PO4 + Pb(NO3)4 → Pb3(PO4...

Balance the chemical equation

(NH_{4})_{3}PO_{4} + Pb(NO_{3})_{4} \rightarrow Pb_{3}(PO_{4})_{4} + NH_{4}NO_{3}

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

We want to find constants x_{1}, x_{2}, x_{3}, x_{4} such that

x_{1}(NH_{4})_{3}PO_{4} + x_{2}Pb(NO_{3})_{4} \rightarrow x_{3}Pb_{3}(PO_{4})_{4} + x_{4}NH_{4}NO_{3}

is balanced. Define vectors in \mathbb{R} ^5 by

We get the vector equation

x_{1}\left [ \begin{matrix} 3 \\ 12 \\ 1 \\ 4 \\ 0 \end{matrix} \right ] + x_{2}\left [ \begin{matrix} 4 \\ 0 \\ 0 \\ 12 \\ 1 \end{matrix} \right ] = x_{3}\left [ \begin{matrix} 0 \\ 0 \\ 4 \\ 16 \\ 3 \end{matrix} \right ] + x_{4}\left [ \begin{matrix} 2 \\ 4 \\ 0 \\ 3 \\ 0 \end{matrix} \right]

Rearranging gives the homogeneous system

    3x_{1} + 4x_{2} – 2x_{4} = 0

               12x_{1} – 4x_{4} = 0

                       x_{1} – 4x_{3} = 0

4x_{1} + 12x_{2} – 16x_{3} – 3x_{4} = 0

                       x_{2} – 3x_{3} = 0

Row reducing the corresponding coefficient matrix gives

\left [ \begin{matrix} 3 & 4 & 0 & -2 \\ 12 & 0 & 0 & -4 \\ 1 & 0 & -4 & 0 \\ 4 & 12 & -16 & -3 \\ 0 & 1 & -3 & 0 \end{matrix} \right ] \thicksim \left [ \begin{matrix} 1 & 0 & 0 & -1/3 \\ 0 & 1 & 0 & -1/4 \\ 0 & 0 & 1 & -1/12 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{matrix} \right]

We find that a vector equation for the solution space is

\left [ \begin{matrix} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \end{matrix} \right ] = t\left [ \begin{matrix} 1/3 \\ 1/4 \\ 1/12 \\ 1 \end{matrix} \right ] , \ \ \ \ t \in \mathbb{R}

To get the smallest positive integer values, we take t = 12. This gives x_{1} = 4, x_{2} = 3, x_{3} = 1 and x_{4} = 12. Thus, a balanced chemical equation is

4(NH_{4})_{3}PO_{4} + 3Pb(NO_{3})_{4} \rightarrow Pb_{3}(PO_{4})_{4} + 12NH_{4}NO_{3}

 

Related Answered Questions

We use Kirchhoff’s Voltage Law on each of the four...