Question 12.16: Boxes A and B are at rest on a conveyor belt that is initial...

Boxes A and B are at rest on a conveyor belt that is initially at rest. The belt is suddenly started in an upward direction so that slipping occurs between the belt and the boxes. Knowing that the coefficients of kinetic friction between the belt and the boxes are { \left( { \mu }_{ k } \right) }_{ A }=0.30 and { { (\mu }_{ k }) }_{ B }=0.32, determine the initial acceleration of each box.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Assume that a_{B}>a_{A} so that the normal force N_{A B} between the boxes is zero.

A: \quad+\nwarrow \Sigma F_{y}=0: \quad N_{A}-W_{A} \cos 15^{\circ}=0

or \quad N_{A}=W_{A} \cos 15^{\circ}

Slipping:

\begin{aligned}F_{A} & =\left(\mu_{k}\right)_{A} N_{A} \\& =0.3 W_{A} \cos 15^{\circ} \\+\nearrow \Sigma F_{x} & =m_{A} a_{A}: F_{A}-W_{A} \sin 15^{\circ}=m_{A} a_{A}\end{aligned}

or \quad 0.3 W_{A} \cos 15^{\circ}-W_{A} \sin 15^{\circ}=\frac{W_{A}}{g} a_{A}

or 

\begin{aligned}a_{A} & =\left(32.2 \mathrm{\ ft} / \mathrm{s}^{2}\right)\left(0.3 \cos 15^{\circ}-\sin 15^{\circ}\right) \\& =0.997 \mathrm{\ ft} / \mathrm{s}^{2}\end{aligned}

B: \quad+\nwarrow \Sigma F_{y}=0: N_{B}-W_{B} \cos 15^{\circ}=0

or \quad N_{B}=W_{B} \cos 15^{\circ}

Slipping: \quad F_{B}=\left(\mu_{k}\right)_{B} N_{B}

=0.32 W_{B} \cos 15^{\circ}

+\nearrow \Sigma F_{x}=m_{B} a_{B}: \quad F_{B}-W_{B} \sin 15^{\circ}=m_{B} a_{B}

or \quad 0.32 W_{B} \cos 15^{\circ}-W_{B} \sin 15^{\circ}  =\frac{W_{B}}{g} a_{B}

or

\begin{aligned}a_{B} & =\left(32.2 \mathrm{\ ft} / \mathrm{s}^{2}\right)\left(0.32 \cos 15^{\circ}-\sin 15^{\circ}\right)=1.619 \mathrm{\ ft} / \mathrm{s}^{2} \\a_{B} & >a_{A} \Rightarrow \text { assumption is correct }\end{aligned}

\begin{aligned}& \mathbf{a}_{A}=0.997 \mathrm{\ ft} / \mathrm{s}^{2} \ ⦨ 15^{\circ} \blacktriangleleft\\& \mathbf{a}_{B}=1.619 \mathrm{\ ft} / \mathrm{s}^{2} \ ⦨ 15^{\circ}\blacktriangleleft\end{aligned}

Note: If it is assumed that the boxes remain in contact \left(N_{A B} \neq 0\right), then assuming N_{A B} to be compression,

a_{A}=a_{B} \quad \text { and find }\left(\Sigma F_{x}=m a\right) \text { for each box. }

A: \quad0.3 W_{A} \cos 15^{\circ}-W_{A} \sin 15^{\circ}-N_{A B}=\frac{W_{A}}{g} a

B: \quad 0.32 W_{B} \cos 15^{\circ}-W_{B} \sin 15^{\circ}+N_{A B}=\frac{W_{B}}{g} a

Solving yields a=1.273 \mathrm{\ ft} / \mathrm{s}^{2} and N_{A B}=-0.859 \mathrm{\ lb}, which contradicts the assumption.

12.16.
12.16..

Related Answered Questions