Question 2.15:  Brinell hardness tests were made on a random sample of 10 s...

Brinell hardness tests were made on a random sample of 10 steel parts during processing. The

results were HB values of 230, 232(2), 234, 235(3), 236(2), and 239. Estimate the mean and

standard deviation of the ultimate strength in kpsi.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.
\text { For the data given, converting } H_{B} \text { to } S_{u} \text { using Eq. (2-21) }\\ \begin{array}{|ccc|} \hline H_{B} & S_{u}(\mathrm{kpsi}) & S_{u}^{2}(\mathrm{kpsi}) \\ 230 & 115 & 13225 \\ 232 & 116 & 13456 \\ 232 & 116 & 13456 \\ 234 & 117 & 13689 \\ 235 & 117.5 & 13806.25 \\ 235 & 117.5 & 13806.25 \\ 235 & 117.5 & 13806.25 \\ 236 & 118 & 13924 \\ 236 & 118 & 13924 \\ 239 & 119.5 & 14280.25 \\ \Sigma S_{u}= & 1172 & \Sigma S_{u}^{2}=137373 \\ \hline \end{array}\\ \\ \bar{S}_{u}=\frac{\sum S_{u}}{N}=\frac{1172}{10}=117.2 \doteq 117 \mathrm{kpsi} \quad \text {  . }\\

Eq. (20-8),

s_{S_{u}}=\sqrt{\frac{\sum_{i=1}^{10} S_{u}^{2}-N \bar{S}_{u}^{2}}{N-1}}=\sqrt{\frac{137373-10(117.2)^{2}}{9}}=1.27 \mathrm{kpsi} \quad \text {  . }

Eq. (2-21),

S_{u}= \begin{cases}0.5 H_{B} & \text { kpsi } \\ 3.4 H_{B} & \mathrm{MPa}\end{cases}

Eq. (20-8),:

s_{x}=\sqrt{\frac{\sum_{i=1}^{N} x_{i}^{2}-\left(\sum_{i=1}^{N} x_{i}\right)^{2} / N}{N-1}}=\sqrt{\frac{\sum_{i=1}^{N} x_{i}^{2}-N \bar{x}^{2}}{N-1}}

Related Answered Questions