Calculate 〈nl|\hat{P}^{4}|nl 〉 in a stationary state |nl 〉 of the hydrogen atom.
Calculate 〈nl|\hat{P}^{4}|nl 〉 in a stationary state |nl 〉 of the hydrogen atom.
To calculate 〈nl|\hat{P}^{4}|nl 〉 we may consider expressing \hat{P}^{4} in terms of the hydrogen’s Hamiltonian. Since \hat{H}=\hat{P}^{2}/(2m_{e} )-e^{2} /r we have \hat{P}^{2}=2m_{e}(\hat{H}+e^{2} /r) : hence
〈nl|\hat{P}^{4}|nl 〉=(2m_{e} )^{2} \left\langle nl|\left(\hat{H} +\frac{e^{2}}{r} \right) ^{2}|nl \right\rangle=(2m_{e} )^{2}\left\langle nl|\hat{H}^{2}+\hat{H}\frac {e^{2}}{r}+\frac{e^{2}}{r}\hat{H}+\frac{e^{4}}{r^{2}}|nl \right \rangle
=(2m_{e} )^{2}\left[E^{2}_{n}+E_{n} \left\langle nl|\frac {e^{2}}{r}|nl\right\rangle +\left\langle nl|\frac{e^{2}}{r}|nl\right \rangle E_{n}+ \left\langle nl|\frac{e^{4}}{r^{2}}|nl\right\rangle \right] , (6.329)
where we have used the fact that |nl 〉 is an eigenstate of \hat{H} :\hat{H}|nl 〉=E_{n}|nl 〉 with E_{n}=-e^{2}/(2a_{0} n^{2} )=-13.6eV/n^{2}. The expectation values of 1/r and 1/r^{2} are given by (6.182) and (6.183), 〈nl |r^{-1}|nl 〉=1/(n^{2}a_{0}) and 〈nl|r^{-2}|nl 〉=2[n^{3}(2l+1)a^{2}_{0}];
〈nl|r^{-1}|nl 〉=\frac{1}{n^{2}a_{0}} , (6.182)
〈nl|r^{-2}|nl 〉=\frac{2}{n^{3}(2l+1)a^{2}_{0} } , (6.183)
we can thus rewrite (6.329) as
〈nl|\hat{P}^{4}|nl 〉=(2m_{e} )^{2} \left[E^{2}_{n}+2E_{n} \left\langle nl|\frac{e^{2}}{r}|nl\right\rangle + \left\langle nl|\frac {e^{4}}{r^{2}}|nl\right\rangle\right]=(2m_{e} E_{n})^{2}\left[1+\frac{2e^{2}}{E_{n}}\frac{1}{n^{2}a_{0}}+\frac{e^{4}}{E^{2}_{n}} \frac{2}{n^{3}(2l+1) a^{2}_{0} } \right]
=(2m_{e} E_{n})^{2}\left[1-4+\frac{8n}{2l+1} \right] ; (6.330)
in deriving the last relation we have used E_{n}=-e^{2}/(2a_{0} n^{2}) . Now, since a_{0}=\hbar ^{2} /(m_{e}e^{2}) , the energy E_{n} becomes E_{n}=-e^{2} /(2a_{0}n^{2})=-m_{e}e^{4}/(2\hbar ^{2}n^{2}) which, when inserted into (6.330), leads to
〈nl|\hat{P}^{4}|nl 〉=\frac{m^{4}_{e} e^{8}}{\hbar ^{4}n^{4}} \left[\frac{8n}{2l+1} -3\right] . (6.331)