Calculate \left [ \begin{matrix} 2 & 3 \\ 4 & 1 \end{matrix} \right ] \left [ \begin{matrix} 5 & 1 \\ -2 & 7 \end{matrix} \right ].
Calculate \left [ \begin{matrix} 2 & 3 \\ 4 & 1 \end{matrix} \right ] \left [ \begin{matrix} 5 & 1 \\ -2 & 7 \end{matrix} \right ].
Taking dot products of the rows of the first matrix with columns of the second matrix gives
\left [ \begin{matrix} 2 & 3 \\ 4 & 1 \end{matrix} \right ] \left [ \begin{matrix} 5 & 1 \\ -2 & 7 \end{matrix} \right ] = \left [ \begin{matrix} 2(5) + 3(−2) & 2(1) + 3(7) \\ 4(5) + 1(−2) & 4(1) + 1(7) \end{matrix} \right ] = \left [ \begin{matrix} 4 & 23 \\ 18 & 11 \end{matrix} \right ]