Question 1.7: Calculate d(p)/dt . Answer. d(p)/dt = (-∂V/∂x) . (1.38) This...

Calculate d(p)/dt . Answer.

\frac{d\left\langle p\right\rangle }{dt} = \left\langle -\frac{\partial V}{\partial x} \right\rangle .

This is an instance of Ehrenfest’s theorem, which asserts that expectation values obey the classical laws.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

From Eq. 1.33,

\left\langle p\right\rangle = m \frac{d \left\langle x\right\rangle }{dt} = i\hbar \int{\Bigl(\Psi ^*\frac{\partial \Psi }{\partial x} \Bigr) } dx .    (1.33).

\frac{d\left\langle p\right\rangle }{dt} = – i\hbar \int{\frac{\partial  }{\partial t} \bigl(\Psi ^*\frac{\partial \Psi }{\partial x}\bigr) }dx .

But, noting that \frac{\partial ^2 Ψ}{\partial x \partial t} = \frac{\partial ^2 Ψ}{\partial t \partial x} .

and using Eqs. 1.23-1.24:

\frac{\partial  Ψ}{ \partial t} = \frac{i\hbar}{2m} \frac{\partial ^2 Ψ}{\partial x ^2} – \frac{i}{\hbar}V Ψ .        (1.23).

\frac{\partial  Ψ^*}{ \partial t} = -\frac{i\hbar}{2m} \frac{\partial ^2 Ψ^*}{\partial x ^2} + \frac{i}{\hbar}V Ψ^* .    (1.24).

\frac{\partial  }{\partial t} \Bigl(\Psi ^*\frac{\partial \Psi }{\partial x} \Bigr)  = \frac{\partial  Ψ^*}{ \partial t} \frac{\partial  Ψ}{ \partial x} + Ψ^* \frac{\partial  }{\partial x} \Bigl(\frac{\partial \Psi }{\partial t} \Bigr)  = \biggl[-\frac{ i\hbar}{2m} \frac{\partial ^2 Ψ^*}{\partial x ^2}  + \frac{ i}{\hbar} V Ψ^*\biggr] \frac{\partial \Psi }{\partial x} + Ψ^* \frac{\partial }{\partial x }\biggl[ \frac{ i\hbar}{2m} \frac{\partial ^2 Ψ^*}{\partial x ^2} – \frac{ i}{\hbar} V Ψ \biggr]

= \frac{ i\hbar}{2m} \biggl[ Ψ^* \frac{\partial ^3 Ψ}{\partial x ^3} – \frac{\partial ^2 Ψ^*}{\partial x ^2} \frac{\partial  Ψ}{\partial x } \biggr] + \frac{ i}{\hbar}\biggl[ V Ψ^* \frac{\partial  Ψ}{\partial x} – Ψ^* \frac{\partial  }{\partial x } (V Ψ)\biggr] .

The first term integrates to zero, using integration by parts twice, and the second term can be simplified to V Ψ^* \frac{\partial  Ψ}{\partial x} – Ψ^* V \frac{\partial  Ψ}{\partial x} – Ψ^* \frac{\partial  V}{\partial x} Ψ = – \left|\Psi \right|^2 \frac{\partial  V}{\partial x} .

So

\frac{d\left\langle p\right\rangle }{dt} = – i\hbar \biggl(\frac{ i}{\hbar}\biggr)  \int { – \left|\Psi \right|^2 \frac{\partial  V}{\partial x}}dx = \left\langle – \frac{\partial V}{\partial x} \right\rangle .    QED

Related Answered Questions