Calculate d(p)/dt . Answer.
\frac{d\left\langle p\right\rangle }{dt} = \left\langle -\frac{\partial V}{\partial x} \right\rangle .
This is an instance of Ehrenfest’s theorem, which asserts that expectation values obey the classical laws.
Calculate d(p)/dt . Answer.
\frac{d\left\langle p\right\rangle }{dt} = \left\langle -\frac{\partial V}{\partial x} \right\rangle .
This is an instance of Ehrenfest’s theorem, which asserts that expectation values obey the classical laws.
From Eq. 1.33,
\left\langle p\right\rangle = m \frac{d \left\langle x\right\rangle }{dt} = i\hbar \int{\Bigl(\Psi ^*\frac{\partial \Psi }{\partial x} \Bigr) } dx . (1.33).
\frac{d\left\langle p\right\rangle }{dt} = – i\hbar \int{\frac{\partial }{\partial t} \bigl(\Psi ^*\frac{\partial \Psi }{\partial x}\bigr) }dx .
But, noting that \frac{\partial ^2 Ψ}{\partial x \partial t} = \frac{\partial ^2 Ψ}{\partial t \partial x} .
and using Eqs. 1.23-1.24:
\frac{\partial Ψ}{ \partial t} = \frac{i\hbar}{2m} \frac{\partial ^2 Ψ}{\partial x ^2} – \frac{i}{\hbar}V Ψ . (1.23).
\frac{\partial Ψ^*}{ \partial t} = -\frac{i\hbar}{2m} \frac{\partial ^2 Ψ^*}{\partial x ^2} + \frac{i}{\hbar}V Ψ^* . (1.24).
\frac{\partial }{\partial t} \Bigl(\Psi ^*\frac{\partial \Psi }{\partial x} \Bigr) = \frac{\partial Ψ^*}{ \partial t} \frac{\partial Ψ}{ \partial x} + Ψ^* \frac{\partial }{\partial x} \Bigl(\frac{\partial \Psi }{\partial t} \Bigr) = \biggl[-\frac{ i\hbar}{2m} \frac{\partial ^2 Ψ^*}{\partial x ^2} + \frac{ i}{\hbar} V Ψ^*\biggr] \frac{\partial \Psi }{\partial x} + Ψ^* \frac{\partial }{\partial x }\biggl[ \frac{ i\hbar}{2m} \frac{\partial ^2 Ψ^*}{\partial x ^2} – \frac{ i}{\hbar} V Ψ \biggr]= \frac{ i\hbar}{2m} \biggl[ Ψ^* \frac{\partial ^3 Ψ}{\partial x ^3} – \frac{\partial ^2 Ψ^*}{\partial x ^2} \frac{\partial Ψ}{\partial x } \biggr] + \frac{ i}{\hbar}\biggl[ V Ψ^* \frac{\partial Ψ}{\partial x} – Ψ^* \frac{\partial }{\partial x } (V Ψ)\biggr] .
The first term integrates to zero, using integration by parts twice, and the second term can be simplified to V Ψ^* \frac{\partial Ψ}{\partial x} – Ψ^* V \frac{\partial Ψ}{\partial x} – Ψ^* \frac{\partial V}{\partial x} Ψ = – \left|\Psi \right|^2 \frac{\partial V}{\partial x} .
So
\frac{d\left\langle p\right\rangle }{dt} = – i\hbar \biggl(\frac{ i}{\hbar}\biggr) \int { – \left|\Psi \right|^2 \frac{\partial V}{\partial x}}dx = \left\langle – \frac{\partial V}{\partial x} \right\rangle . QED