Question 11.4: Calculate the differential cross section in the first Born a...

Calculate the differential cross section in the first Born approximation for the scattering between two identical particles having spin 1, mass m, and interacting through a potential V(r)=V_0e^{-ar}.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

As seen in Chapter 7, the spin states of two identical particles with spin s_1=s_2=1  consist of a total of nine states: a quintuplet |2,m〉 (i.e.,|2,\pm 2〉,|2,\pm 1〉,|2,0〉)  and a singlet |0,0〉,   which are symmetric, and a triplet |1,m〉 (i.e.,|1,\pm 1〉,|1,0〉),  which are antisymmetric under particle permutation. That is, while the six spin states corresponding to S = 2 and S = 0 are symmetric, the three S = 1  states are antisymmetric. Thus, if the scattering particles are unpolarized, the differential cross section is

\frac{d\sigma }{d\Omega }=\frac{5}{9}\frac{d\sigma _S}{d\Omega }+\frac{1}{9}\frac{d\sigma _S}{d\Omega }+\frac{3}{9}\frac{d\sigma _A}{d\Omega }=\frac{2}{3}\frac{d\sigma _S}{d\Omega }+\frac{1}{3}\frac{d\sigma _A}{d\Omega },               (11.128)

where

\frac{d\sigma _S}{d\Omega } =\left|f(\theta )+f(\pi -\theta )\right|^2,    \frac{d\sigma _A}{d\Omega } =\left|f(\theta )-f(\pi -\theta )\right|^2.             (11.129)

The scattering amplitude is given in the Born approximation by (11.69) f(\theta )=-\frac{2\mu }{\hbar ^2q}\int_{0}^{\infty }{r^\prime }V(r^\prime )\sin (qr^\prime )dr^\prime , :

f(\theta )=-\frac{2V_0\mu }{\hbar ^2q}\int_{0}^{\infty }{re^{-ar} } \sin (qr)dr =- \frac{V_0\mu }{i\hbar ^2q} \int_{0}^{\infty }{re^{-(a-iq)r} } dr+ \frac{V_0\mu }{i\hbar ^2q} \int_{0}^{\infty }{re^{-(a+iq)r} } dr

 

=\frac{V_0\mu }{\hbar ^2q}\frac{\partial}{\partial q} \int_{0}^{\infty }{e^{-(a-iq)r} } dr + \frac{V_0\mu }{\hbar ^2q}\frac{\partial}{\partial q} \int_{0}^{\infty }{e^{-(a+iq)r} } dr

 

=\frac{V_0\mu }{\hbar ^2q}\frac{\partial}{\partial q} \left(\frac{1}{a-iq} \right) + \frac{V_0\mu }{\hbar ^2q}\frac{\partial}{\partial q} \left(\frac{1}{a+iq} \right) =\frac{V_0\mu }{\hbar ^2q}\left[\frac{i}{(a-iq)^2}+\frac{-i}{(a+iq)^2} \right]

 

=-\frac{4V_0\mu a}{\hbar ^2}\frac{1}{(a^2+q^2)^2} =-\frac{4V_0\mu a }{\hbar ^2}\frac{1}{(a^2+4k^2\sin ^2(\theta /2))^2},               (11.130)

where we have used q=2k\sin (\theta /2),  with  \mu =m/2.   Since \sin [(\pi -\theta )/2]=\cos (\theta /2),   we have

\frac{d\sigma _S}{d\Omega }=\frac{16V^2_0\mu ^2a^2}{\hbar ^4}\left[\frac{1}{(a^2+4k^2\sin ^2(\theta /2))^2}+\frac{1}{(a^2+4k^2\cos ^2(\theta /2))^2} \right] ^2 ,               (11.131)

\frac{d\sigma _A}{d\Omega }=\frac{16V^2_0\mu ^2a^2}{\hbar ^4}\left[\frac{1}{(a^2+4k^2\sin ^2(\theta /2))^2}-\frac{1}{(a^2+4k^2\cos ^2(\theta /2))^2} \right] ^2 .              (11.132)

Related Answered Questions