Calculate the differential cross section in the first Born approximation for the scattering between two identical particles having spin 1, mass m, and interacting through a potential V(r)=V_0e^{-ar}.
Calculate the differential cross section in the first Born approximation for the scattering between two identical particles having spin 1, mass m, and interacting through a potential V(r)=V_0e^{-ar}.
As seen in Chapter 7, the spin states of two identical particles with spin s_1=s_2=1 consist of a total of nine states: a quintuplet |2,m〉 (i.e.,|2,\pm 2〉,|2,\pm 1〉,|2,0〉) and a singlet |0,0〉, which are symmetric, and a triplet |1,m〉 (i.e.,|1,\pm 1〉,|1,0〉), which are antisymmetric under particle permutation. That is, while the six spin states corresponding to S = 2 and S = 0 are symmetric, the three S = 1 states are antisymmetric. Thus, if the scattering particles are unpolarized, the differential cross section is
\frac{d\sigma }{d\Omega }=\frac{5}{9}\frac{d\sigma _S}{d\Omega }+\frac{1}{9}\frac{d\sigma _S}{d\Omega }+\frac{3}{9}\frac{d\sigma _A}{d\Omega }=\frac{2}{3}\frac{d\sigma _S}{d\Omega }+\frac{1}{3}\frac{d\sigma _A}{d\Omega }, (11.128)
where
\frac{d\sigma _S}{d\Omega } =\left|f(\theta )+f(\pi -\theta )\right|^2, \frac{d\sigma _A}{d\Omega } =\left|f(\theta )-f(\pi -\theta )\right|^2. (11.129)
The scattering amplitude is given in the Born approximation by (11.69) f(\theta )=-\frac{2\mu }{\hbar ^2q}\int_{0}^{\infty }{r^\prime }V(r^\prime )\sin (qr^\prime )dr^\prime , :
f(\theta )=-\frac{2V_0\mu }{\hbar ^2q}\int_{0}^{\infty }{re^{-ar} } \sin (qr)dr =- \frac{V_0\mu }{i\hbar ^2q} \int_{0}^{\infty }{re^{-(a-iq)r} } dr+ \frac{V_0\mu }{i\hbar ^2q} \int_{0}^{\infty }{re^{-(a+iq)r} } dr=\frac{V_0\mu }{\hbar ^2q}\frac{\partial}{\partial q} \int_{0}^{\infty }{e^{-(a-iq)r} } dr + \frac{V_0\mu }{\hbar ^2q}\frac{\partial}{\partial q} \int_{0}^{\infty }{e^{-(a+iq)r} } dr
=\frac{V_0\mu }{\hbar ^2q}\frac{\partial}{\partial q} \left(\frac{1}{a-iq} \right) + \frac{V_0\mu }{\hbar ^2q}\frac{\partial}{\partial q} \left(\frac{1}{a+iq} \right) =\frac{V_0\mu }{\hbar ^2q}\left[\frac{i}{(a-iq)^2}+\frac{-i}{(a+iq)^2} \right]
=-\frac{4V_0\mu a}{\hbar ^2}\frac{1}{(a^2+q^2)^2} =-\frac{4V_0\mu a }{\hbar ^2}\frac{1}{(a^2+4k^2\sin ^2(\theta /2))^2}, (11.130)
where we have used q=2k\sin (\theta /2), with \mu =m/2. Since \sin [(\pi -\theta )/2]=\cos (\theta /2), we have
\frac{d\sigma _S}{d\Omega }=\frac{16V^2_0\mu ^2a^2}{\hbar ^4}\left[\frac{1}{(a^2+4k^2\sin ^2(\theta /2))^2}+\frac{1}{(a^2+4k^2\cos ^2(\theta /2))^2} \right] ^2 , (11.131)
\frac{d\sigma _A}{d\Omega }=\frac{16V^2_0\mu ^2a^2}{\hbar ^4}\left[\frac{1}{(a^2+4k^2\sin ^2(\theta /2))^2}-\frac{1}{(a^2+4k^2\cos ^2(\theta /2))^2} \right] ^2 . (11.132)