Calculate the exergy of the system (aluminum plus gas) at the initial and final states of Problem 6.245E, and also the irreversibility.
Calculate the exergy of the system (aluminum plus gas) at the initial and final states of Problem 6.245E, and also the irreversibility.
State 1: T _{1}=400 F \quad v _{1}=2 / 2.862=0.6988 \quad P _{1}=300 psi
Ideal gas v _{2}= v _{1}(300 / 220)(537 / 860)=0.595 ; \quad v _{o}=8.904= RT _{o} / P _{o}
The metal does not change volume so the terms as Eq.8.22 are added
\begin{aligned}&\phi_{1}= m _{ gas } \phi_{ gas }+ m _{ Al } \phi_{ Al 1} \\&= m _{ gas } C _{ v }\left( T _{1}- T _{ o }\right)- m _{ gas } T _{o}\left[ C _{ p } \ln \frac{ T _{1}}{ T _{ o }}- R \ln \frac{ P _{1}}{ P _{ o }}\right]+ m _{ gas } P _{ o }\left( v _{1}- v _{ o }\right) \\&+ m _{ Al }\left[ C \left( T _{1}- T _{o}\right)- T _{o} C \ln \left( T _{1} / T _{o}\right)\right]_{ Al }\end{aligned}\begin{aligned}\phi_{1}=2.862 &\left[0.156(400-77)-537\left(0.201 \ln \frac{860}{537}-\frac{35.1}{778} \ln \frac{300}{14.7}\right)\right.\\&\left.+14.7(0.6988-8.904)\left(\frac{144}{778}\right)\right]+8 \times 0.21\left[400-77-537 \ln \frac{860}{537}\right] \\=& 143.96+117.78= 2 6 1 . 7 4 ~ B t u\end{aligned}
\begin{aligned}&\phi_{2}=2.862\left[0.156(77-77)-537\left(0.201 \ln \frac{537}{537}-\frac{35.1}{778} \ln \frac{220}{14.7}\right)\right. \\&\left.+14.7(0.595-8.904)\left(\frac{144}{778}\right)\right]+8 \times 0.21\left[77-77-537 \ln \frac{537}{537}\right] \\&=122.91+0= 1 2 2 . 9 1 Btu\end{aligned}
\begin{aligned}{ }_{1} W _{2 CO _{2}}=& \int PdV =0.5\left( P _{1}+ P _{2}\right)\left( V _{2}- V _{1}\right)=[(300+220) / 2](1.703-2) \frac{144}{778} \\&=-14.29 Btu\end{aligned}
\begin{aligned}{ }_{1} I_{2} &=\phi_{1}-\phi_{2}+\left(1-T_{o} / T_{H}\right) {}_{1} Q_{2}-{{ }_{1} W_{2}} ^{A C}+P_{o} m\left(V_{2}-V_{1}\right) \\&=261.74-122.91+0-(-14.29)+14.7 \times 2.862 \times \frac{144}{778}(0.595-0.6988) \\&= 1 5 2 . 3 \text { Btu }\end{aligned}
……………………………………..
Eq.8.22 :
\begin{aligned}\psi &=\left(h_{ tot }-T_{0} s\right)-\left(h_{ tot 0}-T_{0} s_{0}\right) \\&=\left(h-T_{0} s+\frac{1}{2} V ^{2}+g Z\right)-\left(h_{0}-T_{0} s_{0}+g Z_{0}\right)\end{aligned}