Question 8.183E: Calculate the exergy of the system (aluminum plus gas) at th...

Calculate the exergy of the system (aluminum plus gas) at the initial and final states of Problem 6.245E, and also the irreversibility.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

State 1:      T _{1}=400   F \quad v _{1}=2 / 2.862=0.6988 \quad P _{1}=300   psi

Ideal gas        v _{2}= v _{1}(300 / 220)(537 / 860)=0.595 ; \quad v _{o}=8.904= RT _{o} / P _{o}

The metal does not change volume so the terms as Eq.8.22 are added

\begin{aligned}&\phi_{1}= m _{ gas } \phi_{ gas }+ m _{ Al } \phi_{ Al  1} \\&= m _{ gas } C _{ v }\left( T _{1}- T _{ o }\right)- m _{ gas } T _{o}\left[ C _{ p } \ln \frac{ T _{1}}{ T _{ o }}- R \ln \frac{ P _{1}}{ P _{ o }}\right]+ m _{ gas } P _{ o }\left( v _{1}- v _{ o }\right) \\&+ m _{ Al }\left[ C \left( T _{1}- T _{o}\right)- T _{o} C \ln \left( T _{1} / T _{o}\right)\right]_{ Al }\end{aligned}

 

\begin{aligned}\phi_{1}=2.862 &\left[0.156(400-77)-537\left(0.201 \ln \frac{860}{537}-\frac{35.1}{778} \ln \frac{300}{14.7}\right)\right.\\&\left.+14.7(0.6988-8.904)\left(\frac{144}{778}\right)\right]+8 \times 0.21\left[400-77-537 \ln \frac{860}{537}\right] \\=& 143.96+117.78= 2 6 1 . 7 4 ~ B t u\end{aligned}

 

\begin{aligned}&\phi_{2}=2.862\left[0.156(77-77)-537\left(0.201 \ln \frac{537}{537}-\frac{35.1}{778} \ln \frac{220}{14.7}\right)\right. \\&\left.+14.7(0.595-8.904)\left(\frac{144}{778}\right)\right]+8 \times 0.21\left[77-77-537 \ln \frac{537}{537}\right] \\&=122.91+0= 1 2 2 . 9 1   Btu\end{aligned}

 

\begin{aligned}{ }_{1} W _{2  CO _{2}}=& \int PdV =0.5\left( P _{1}+ P _{2}\right)\left( V _{2}- V _{1}\right)=[(300+220) / 2](1.703-2) \frac{144}{778} \\&=-14.29   Btu\end{aligned}

 

\begin{aligned}{ }_{1} I_{2} &=\phi_{1}-\phi_{2}+\left(1-T_{o} / T_{H}\right) {}_{1} Q_{2}-{{ }_{1} W_{2}} ^{A C}+P_{o} m\left(V_{2}-V_{1}\right) \\&=261.74-122.91+0-(-14.29)+14.7 \times 2.862 \times \frac{144}{778}(0.595-0.6988) \\&= 1 5 2 . 3   \text { Btu }\end{aligned}

 

 

……………………………………..

Eq.8.22 :
\begin{aligned}\psi &=\left(h_{ tot }-T_{0} s\right)-\left(h_{ tot  0}-T_{0} s_{0}\right) \\&=\left(h-T_{0} s+\frac{1}{2} V ^{2}+g Z\right)-\left(h_{0}-T_{0} s_{0}+g Z_{0}\right)\end{aligned}

 

1

Related Answered Questions