Question 8.3: Calculate the force of magnetic attraction between the north...

Calculate the force of magnetic attraction between the northern and southern hemispheres of a uniformly charged spinning spherical shell, with radius R, angular velocity ω, and surface charge density σ. [This is the same as Prob. 5.44, but this time use the Maxwell stress tensor and Eq. 8.21.]

F =\oint_{ S } \overleftrightarrow{ T } \cdot d a                           (8.21)

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The force is clearly in the z direction, so we need

(\overleftrightarrow{T} \cdot d a )_{z}=T_{z x} d a_{x}+T_{z y} d a_{y}+T_{z z} d a_{z}=\frac{1}{\mu_{0}}\left(B_{z} B_{x} d a_{x}+B_{z} B_{y} d a_{y}+B_{z} B_{z} d a_{z}-\frac{1}{2} B^{2} d a_{z}\right)

 

=\frac{1}{\mu_{0}}\left[B_{z}( B \cdot d a )-\frac{1}{2} B^{2} d a_{z}\right] .

Now  B =\frac{2}{3} \mu_{0} \sigma R \omega \hat{ z } \text { (inside) and } B =\frac{\mu_{0} m}{4 \pi r^{3}}(2 \cos \theta \hat{ r }+\sin \theta \hat{ \theta }) \text { (outside), where } m=\frac{4}{3} \pi R^{3}(\sigma \omega R) .

(From Eq. 5.70, Prob. 5.37, and Eq. 5.88.) We want a surface that encloses the entire upper hemisphere—say a hemispherical cap just outside r = R plus the equatorial circular disk.

B = \nabla \times A =\frac{2 \mu_{0} R \omega \sigma}{3}(\cos \theta \hat{ r }-\sin \theta \hat{ \theta })=\frac{2}{3} \mu_{0} \sigma R \omega \hat{ z }=\frac{2}{3} \mu_{0} \sigma R \omega            (5.70)

B _{\text {dip }}( r )=\nabla \times A =\frac{\mu_{0} m}{4 \pi r^{3}}(2 \cos \theta \hat{ r }+\sin \theta \hat{ \theta })                  (5.88)

Hemisphere:

B_{z}=\frac{\mu_{0} m}{4 \pi R^{3}}\left[2 \cos \theta(\hat{ r })_{z}+\sin \theta(\hat{ \theta })_{z}\right]=\frac{\mu_{0} m}{4 \pi R^{3}}\left[2 \cos ^{2} \theta-\sin ^{2} \theta\right]=\frac{\mu_{0} m}{4 \pi R^{3}}\left(3 \cos ^{2} \theta-1\right).

d a =R^{2} \sin \theta d \theta d \phi \hat{ r } ; B \cdot d a =\frac{\mu_{0} m}{4 \pi R^{3}}(2 \cos \theta) R^{2} \sin \theta d \theta d \phi ; d a_{z}=R^{2} \sin \theta d \theta d \phi \cos \theta;

B^{2}=\left(\frac{\mu_{0} m}{4 \pi R^{3}}\right)^{2}\left(4 \cos ^{2} \theta+\sin ^{2} \theta\right)=\left(\frac{\mu_{0} m}{4 \pi R^{3}}\right)^{2}\left(3 \cos ^{2} \theta+1\right).

(\overleftrightarrow{T} \cdot d a )_{z}=\frac{1}{\mu_{0}}\left(\frac{\mu_{0} m}{4 \pi R^{3}}\right)^{2}\left[\left(3 \cos ^{2} \theta-1\right) 2 \cos \theta R^{2} \sin \theta d \theta d \phi-\frac{1}{2}\left(3 \cos ^{2} \theta+1\right) R^{2} \sin \theta \cos \theta d \theta d \phi\right]

 

=\mu_{0}\left(\frac{\sigma \omega R}{3}\right)^{2}\left[\frac{1}{2} R^{2} \sin \theta \cos \theta d \theta d \phi\right]\left(12 \cos ^{2} \theta-4-3 \cos ^{2} \theta-1\right)

 

=\frac{\mu_{0}}{2}\left(\frac{\sigma \omega R^{2}}{3}\right)^{2}\left(9 \cos ^{2} \theta-5\right) \sin \theta \cos \theta d \theta d \phi

 

\left(F_{\text {hemi }}\right)_{z}=\frac{\mu_{0}}{2}\left(\frac{\sigma \omega R^{2}}{3}\right)^{2} 2 \pi \int_{0}^{\pi / 2}\left(9 \cos ^{3} \theta-5 \cos \theta\right) \sin \theta d \theta=\left.\mu_{0} \pi\left(\frac{\sigma \omega R^{2}}{3}\right)^{2}\left[-\frac{9}{4} \cos ^{4} \theta+\frac{5}{2} \cos ^{2} \theta\right]\right|_{0} ^{\pi / 2}

 

=\mu_{0} \pi\left(\frac{\sigma \omega R^{2}}{3}\right)^{2}\left(0+\frac{9}{4}-\frac{5}{2}\right)=-\frac{\mu_{0} \pi}{4}\left(\frac{\sigma w R^{2}}{3}\right)^{2} .

Disk:

B_{z}=\frac{2}{3} \mu_{0} \sigma R \omega ; \quad d a =r d r d \phi \hat{ \phi }=-r d r d \phi \hat{ z };

B \cdot d a =-\frac{2}{3} \mu_{0} \sigma R \omega r d r d \phi ; \quad B^{2}=\left(\frac{2}{3} \mu_{0} \sigma R \omega\right)^{2} ; \quad d a_{z}=-r d r d \phi.

(\overleftrightarrow{T} \cdot d a )_{z}=\frac{1}{\mu_{0}}\left(\frac{2}{3} \mu_{0} \sigma R \omega\right)^{2}\left[-r d r d \phi+\frac{1}{2} r d r d \phi\right]=-\frac{1}{2 \mu_{0}}\left(\frac{2}{3} \mu_{0} \sigma R \omega\right)^{2} r d r d \phi.

\left(F_{ disk }\right)_{z}=-2 \mu_{0}\left(\frac{\sigma \omega R}{3}\right)^{2} 2 \pi \int_{0}^{R} r d r=-2 \pi \mu_{0}\left(\frac{\sigma \omega R^{2}}{3}\right)^{2}.

Total:

F =-\pi \mu_{0}\left(\frac{\sigma \omega R^{2}}{3}\right)^{2}\left(2+\frac{1}{4}\right) \hat{ z }=-\pi \mu_{0}\left(\frac{\sigma \omega R^{2}}{2}\right)^{2} \hat{ z }  (agrees with Prob. 5.44).

Alternatively, we could use a surface consisting of the entire equatorial plane, closing it with a hemispherical surface “at infinity,” where (since the field is zero out there) the contribution is zero. We have already done the integral over the disk; it remains to do rest of the integral over the plane, from R to . On the plane,

\theta=0 \text {, and }(\text { for } r>R) B =\frac{\mu_{0} m}{4 \pi r^{3}} \hat{ \theta }=-\frac{\mu_{0} m}{4 \pi r^{3}} \hat{ z } , so

\left(F_{\text {rest }}\right)_{z}=-\frac{1}{2 \mu_{0}}\left(\frac{\mu_{0} m}{4 \pi}\right)^{2} 2 \pi \int_{R}^{\infty} \frac{1}{r^{5}} d r=-\left.\frac{\mu_{0}}{16 \pi}\left(\frac{4}{3} \pi R^{4} \sigma \omega\right)^{2}\left[-\frac{1}{4 r^{4}}\right]\right|_{R} ^{\infty}=-\mu_{0} \pi\left(\frac{R^{4} \sigma \omega}{3}\right)^{2}\left[\frac{1}{4 R^{4}}\right]

 

=-\frac{\mu_{0} \pi}{4}\left(\frac{\sigma \omega R^{2}}{3}\right)^{2}

This is the same as \left(F_{\text {hemi }}\right)_{z}, \text { so-when added to }\left(F_{\text {disk }}\right)_{z} —it will yield the same total force as before.

Related Answered Questions