Calculate the irreversibility for the process described in Problem 4.211E, assuming that the heat transfer is with the surroundings at 61 F.
Calculate the irreversibility for the process described in Problem 4.211E, assuming that the heat transfer is with the surroundings at 61 F.
C.V. Cylinder volume out to T _{ o } = 61 F.
Continuity Eq.4.15: m _{2}- m _{1}= m _{ in }
Energy Eq.4.16: m _{2} u _{2}- m _{1} u _{1}= m _{ in } h _{\text {line }}+{ }_{1} Q _{2}-{ }_{1} W _{2}
Entropy Eq.7.12: m _{2} s _{2}- m _{1} s _{1}= m _{ i } s _{ i }+{ }_{1} Q _{2} / T _{ o }+{ }_{1} S _{2 gen}
Process: P _{1} is constant to stops, then constant V to state 2 at P _{2}
State 1: P _{1}, T _{1} \quad m _{1}=\frac{ P _{1} V }{ RT _{1}}=\frac{45 \times 9 \times 144}{53.34 \times 519.7}=2.104 lbm
State 2:
Open to 60 lbf / in ^{2}, T _{2}=630 R
Table F.5:
\begin{aligned}& h _{ i }=266.13 btu / lbm \\& u _{1}=88.68 Btu / lbm \\& u _{2}=107.62 Btu / lbm\end{aligned}Only work as piston moves (V changes) while P = P _{1} \text { until } V = V _{\text {stop }}
{ }_{1} W _{2}=\int Pd V = P _{1}\left( V _{\text {stop }}- V _{1}\right)=45 \times(36-9) \frac{144}{778}=224.9 Btu
m _{2}= P _{2} V _{2} / RT _{2}=\frac{60 \times 36 \times 144}{53.34 \times 630}=9.256 lbm , \quad m _{ i }=7.152 lbm
\begin{aligned}&{ }_{1} Q _{2}= m _{2} u _{2}- m _{1} u _{1}- m _{ i } h _{ i }+{ }_{1} W _{2} \\&\begin{aligned}=& 9.256 \times 107.62-2.104 \times 88.68-7.152 \times 266.13+224.9 \\&=-868.9 Btu\end{aligned}\end{aligned}
Use from table F.4: C _{ p }=0.24, R =53.34 / 778=0.06856 Btu / lbm R,
\begin{aligned}& I = T _{ o } {}_{1}S _{2 gen }= T _{ o }\left[ m _{1}\left( s _{2}- s _{1}\right)+ m _{ i }\left( s _{2}- s _{ i }\right)\right]-{ }_{1} Q _{2} \\&=520.7\left[2.104\left( C _{ p } \ln \frac{630}{519.7}- R \ln \frac{60}{45}\right)+7.152\left( C _{ p } \ln \frac{630}{1100}- R \ln \frac{60}{75}\right)\right] \\&-(-868.9) \\&=520.7(0.05569-0.8473)+868.9 \\&= 4 5 6 . 7 Btu\end{aligned}
……………………………………..
Eq.4.15 : 1=\frac{\dot{m}_{1}}{\dot{m}_{3}}+\frac{\dot{m}_{2}}{\dot{m}_{3}}
Eq.4.16 : 0=\frac{\dot{m}_{1}}{\dot{m}_{3}} h_{1}+\frac{\dot{m}_{2}}{\dot{m}_{3}} h_{2}-h_{3}+\dot{Q} / \dot{m}_{3}
Eq.7.12 : \left(m_{2} s_{2}-m_{1} s_{1}\right)_{ c . v .}=\sum m_{i} s_{i}-\sum m_{e} s_{e}+\int_{0}^{t} \sum_{ c.s. } \frac{\dot{Q}_{ c.v. }}{T} d t+{ }_{1} S_{2 gen }