Calculate the molalities of H^{+} \text{ and } OH^{–} in water at 298 K.
Calculate the molalities of H^{+} \text{ and } OH^{–} in water at 298 K.
In Table 14.1, the standard reduction potential for the half-cell reaction
Table 14.1 Standard Electrode Potentials at 298 K, 1 atm | |
Electrode Reaction | ε^{o,x} volts |
Acid Solutions | |
F_{2} + 2 e^{-} = 2 F^{-} | 2.65 |
S_{2}O_{8}^{2-} + 2e^{-} = 2SO_{4}^{2-} | 1.98 |
Co^{3+} + e^{-} = Co^{2+} | 1.82 |
Ce^{4+} + e^{-} = Ce^{3+} | 1.61 |
½Cl_{2} + e^{-} = Cl^{-} | 1.3595 |
Cr_{2}O_{7}^{2-} + 14H^{+} + e^{-} = 2Cr^{3} + 7H_{2}O | 1.33 |
MnO_{2} + 4H^{+} + 2e^{-} = Mn^{2+} + 2H_{2}O | 1.23 |
Br_{2}(l) + 2e^{-} = 2Br^{-} | 1.0652 |
2Hg^{2+} + 2e^{-} = Hg_{2}^{2+} | 0.92 |
Hg^{2+} + 2e^{-} = Hg | 0.854 |
Ag^{+} + e^{-} = Ag | 0.7991 |
Fe^{3+} + e^{-} = Fe^{2+} | 0.771 |
I_{2} + 2e^{-} = 2I^{-} | 0.5355 |
Fe(CN)_{6}^{3-} + e^{-} = Fe(CN)_{6}^{4-} | 0.36 |
Cu^{2+} + 2e^{-} = Cu | 0.337 |
S_{4}O_{6}^{2-} + 2e^{-} = 2S_{2}O_{3}^{2-} | 0.17 |
Cu^{2+} + e^{-} = Cu^{+} | 0.153 |
Sn^{4+} + 2e^{-} = Sn^{2+} | 0.15 |
S + 2H^{+} + e^{-} = H_{2}S | 0.141 |
2H^{+} + e^{-} = H_{2} | 0.000 |
Fe^{3+} + 3e^{-} = Fe | -0.036 |
Pb^{2+} + 2e^{-} = Pb | -0.126 |
Sn^{2+} + 2e^{-} = Sn | – 0.136 |
Cd^{2+} + 2e^{-} = Cd | – 0.403 |
Cr^{3+} + e^{-} = Cr^{2+} | – 0.41 |
Fe^{2+} + 2e^{-} = Fe | – 0.440 |
Zn^{2+} + 2e^{-} = Zn | – 0.763 |
Al^{3+} + 3e^{-} = Al | – 1.66 |
½ H_{2} + e^{-} = H^{-} | -2.25 |
Mg^{2+} + 2e^{-} = Mg | – 2.37 |
Na^{+} + e^{-} = Na | – 2.714 |
Ca^{2+} + 2e^{-} = Ca | – 2.87 |
Ba^{2+} + 2e^{-} = Ba | – 2.90 |
Cs^{+} + e^{-} = Cs | –2.923 |
K^{+} + e^{-} = K | -2.925 |
Li^{+} + e^{-} = Li | – 3.045 |
Basic Solutions | |
O_{3} + H_{2}O + 2e^{-} = O_{2} + 2OH^{-} | 1.24 |
Fe(OH)_{3} + e^{-} = OH^{-} + Fe(OH)_{2} | – 0.56 |
Ni(OH)_{2} + 2e^{-} = Ni + 2OH^{-} | – 0.72 |
2H_{2}O + 2e^{-} = H_{2} + 2OH^{-} | – 0.828 |
SO_{4}^{2-} + H_{2}O + 2e^{-} = 2OH^{-} + SO_{3}^{2-} | – 0.93 |
CNO^{-} + H_{2}O + 2e^{-} = 2OH^{-} + CN^{-} | – 0.97 |
ZnO_{2}^{2-} + 2H_{2}O + 2e^{-} = Zn + 4OH^{-} | – 1.216 |
Cr(OH)_{3} + 3e^{-} = Cr + 3OH^{-} | – 1.3 |
Ca(OH)_{2} + 2e^{-} = Ca + 2OH^{+} | – 3.03 |
Note : S tandard state is 1 molal. |
\mathrm{H}_{2}\mathrm{O}_{(l)}+e^{-}={\frac{1}{2}}\mathrm{H}_{2(g)}+\mathrm{OH}_{(m)}^{-}
is – 0.828 volts, and the standard reduction potential for the reaction
{\bf H}_{(m)}+e^{-}=\frac{1}{2}{\bf H}_{2(g)}
is zero. Summing gives
\mathrm{H}_{2}\mathrm{O}_{(l)}=H_{ (m)}^{+} +\mathrm{OH}_{( m)}^{-}
for which
\begin{array}{r l}{\Delta G_{298 K}^{\circ}}&{{}}&{{}=-{f {\varepsilon}}^{\circ}=-96487\times(-0.828)}\end{array}
= 79,900 J
=-8.3144\times298\,\ln\,(\gamma_{\pm}m_{\mathrm{H+}}m_{\mathrm{OH-}})
Thus, presuming that \gamma_{\pm}=1,
m_{\mathrm{H}^{+}}m_{\mathrm{OH}^{-}}=0.97\times10^{-5}
or, from the stoichiometry of the dissociation, as m_{\mathrm{H^{+}}}=m_{\mathrm{OH^{-}}},
m_{\mathrm{H}^{+}}=m_{\mathrm{OH}^{-}}=10^{-7}
At a molality of 10^{– 7} , the assumption that γ_{±} = 1 is reasonable.