Question 14.9.1: Calculate the molalities of H^+ and OH^– in water at 298 K.

Calculate the molalities of H^{+} \text{ and } OH^{–} in water at 298 K.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

In Table 14.1, the standard reduction potential for the half-cell reaction

Table 14.1 Standard Electrode Potentials at 298 K, 1 atm
Electrode Reaction ε^{o,x} volts
Acid Solutions
F_{2} + 2 e^{-} = 2 F^{-} 2.65
S_{2}O_{8}^{2-} + 2e^{-} = 2SO_{4}^{2-} 1.98
Co^{3+} + e^{-} = Co^{2+} 1.82
Ce^{4+} + e^{-} = Ce^{3+} 1.61
½Cl_{2} + e^{-} = Cl^{-} 1.3595
Cr_{2}O_{7}^{2-} + 14H^{+} + e^{-} = 2Cr^{3} + 7H_{2}O 1.33
MnO_{2} + 4H^{+} + 2e^{-} = Mn^{2+} + 2H_{2}O 1.23
Br_{2}(l) + 2e^{-} = 2Br^{-} 1.0652
2Hg^{2+} + 2e^{-} = Hg_{2}^{2+} 0.92
Hg^{2+} + 2e^{-} = Hg 0.854
Ag^{+} + e^{-}  = Ag 0.7991
Fe^{3+} + e^{-} = Fe^{2+} 0.771
I_{2} + 2e^{-} = 2I^{-} 0.5355
Fe(CN)_{6}^{3-} + e^{-} = Fe(CN)_{6}^{4-} 0.36
Cu^{2+} + 2e^{-} = Cu 0.337
S_{4}O_{6}^{2-} + 2e^{-} = 2S_{2}O_{3}^{2-} 0.17
Cu^{2+} + e^{-} = Cu^{+} 0.153
Sn^{4+} + 2e^{-} = Sn^{2+} 0.15
S + 2H^{+} + e^{-} = H_{2}S 0.141
2H^{+} + e^{-} = H_{2} 0.000
Fe^{3+} + 3e^{-} = Fe -0.036
Pb^{2+} + 2e^{-} = Pb -0.126
Sn^{2+} + 2e^{-} = Sn – 0.136
Cd^{2+} + 2e^{-} = Cd – 0.403
Cr^{3+} + e^{-} = Cr^{2+} – 0.41
Fe^{2+} + 2e^{-} = Fe – 0.440
Zn^{2+} + 2e^{-} = Zn – 0.763
Al^{3+} + 3e^{-} = Al – 1.66
½ H_{2} + e^{-} = H^{-} -2.25
Mg^{2+} + 2e^{-} = Mg – 2.37
Na^{+} + e^{-} = Na – 2.714
Ca^{2+} + 2e^{-} = Ca – 2.87
Ba^{2+} + 2e^{-} = Ba – 2.90
Cs^{+} + e^{-} = Cs  –2.923
K^{+} + e^{-} = K -2.925
Li^{+} + e^{-} = Li – 3.045
Basic Solutions
O_{3} + H_{2}O + 2e^{-} = O_{2} + 2OH^{-} 1.24
Fe(OH)_{3} + e^{-} = OH^{-} + Fe(OH)_{2} – 0.56
Ni(OH)_{2} + 2e^{-} = Ni + 2OH^{-} – 0.72
2H_{2}O + 2e^{-} = H_{2} + 2OH^{-} – 0.828
SO_{4}^{2-} + H_{2}O + 2e^{-} = 2OH^{-} + SO_{3}^{2-} – 0.93
CNO^{-} + H_{2}O + 2e^{-} = 2OH^{-} + CN^{-} – 0.97
ZnO_{2}^{2-} + 2H_{2}O + 2e^{-} = Zn + 4OH^{-} – 1.216
Cr(OH)_{3} + 3e^{-} = Cr + 3OH^{-} – 1.3
Ca(OH)_{2} + 2e^{-} = Ca + 2OH^{+} – 3.03
Note : S tandard state is 1 molal.

 

\mathrm{H}_{2}\mathrm{O}_{(l)}+e^{-}={\frac{1}{2}}\mathrm{H}_{2(g)}+\mathrm{OH}_{(m)}^{-}

is – 0.828 volts, and the standard reduction potential for the reaction

{\bf H}_{(m)}+e^{-}=\frac{1}{2}{\bf H}_{2(g)}

is zero. Summing gives

\mathrm{H}_{2}\mathrm{O}_{(l)}=H_{ (m)}^{+} +\mathrm{OH}_{( m)}^{-}

for which

\begin{array}{r l}{\Delta G_{298 K}^{\circ}}&{{}}&{{}=-{f {\varepsilon}}^{\circ}=-96487\times(-0.828)}\end{array}

= 79,900 J

=-8.3144\times298\,\ln\,(\gamma_{\pm}m_{\mathrm{H+}}m_{\mathrm{OH-}})

Thus, presuming that \gamma_{\pm}=1,

m_{\mathrm{H}^{+}}m_{\mathrm{OH}^{-}}=0.97\times10^{-5}

or, from the stoichiometry of the dissociation, as m_{\mathrm{H^{+}}}=m_{\mathrm{OH^{-}}},

m_{\mathrm{H}^{+}}=m_{\mathrm{OH}^{-}}=10^{-7}

At a molality of 10^{– 7} , the assumption that γ_{±} = 1 is reasonable.

Related Answered Questions