Question 17.1: Calculate the natural frequency of the systems shown in Fig....

Calculate the natural frequency of the systems shown in Fig.17.9(a) and (b).

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) Force in each spring = 2W.

\text { Deflection of weight } W, \delta_{s t}=2 \text { (deflection of spring } 1+\text { deflection of spring 2) } .

=2\left(\frac{2 W}{k_{1}}+\frac{2 W}{k_{2}}\right) .

=4 W\left(\frac{k_{1}+k_{2}}{k_{1} k_{2}}\right) .

Natural frequency,        \omega_{n}=\sqrt{\frac{g}{\delta_{s t}}}=\sqrt{\frac{g k_{1} k_{2}}{4 W\left(k_{1}+k_{2}\right)}} .

=\sqrt{\frac{k_{1} k_{2}}{4 m\left(k_{1}+k_{2}\right)}} rad / s .

(b) Force in spring 1 = W.

\text { Force in spring } 2=\frac{W}{2} .

\text { Deflection of } W, \delta_{s t}=\text { Deflection of spring } 1+\text { Deflection of spring } 2 .

=\frac{W}{k_{1}}+\frac{1}{2}\left(\frac{W}{2} \times \frac{1}{k_{2}}\right) .

=W\left[\frac{1}{k_{1}}+\frac{1}{4 k_{2}}\right] .

=W\left(\frac{k_{1}+4 k_{2}}{4 k_{1} k_{2}}\right) .

\omega_{n}=\sqrt{\frac{g}{\delta_{s t}}}=\sqrt{\frac{4 k_{1} k_{2}}{m\left(k_{1}+4 k_{2}\right)}} rad / s .

Related Answered Questions