Calculate the natural frequency of the systems shown in Fig.17.9(a) and (b).
Calculate the natural frequency of the systems shown in Fig.17.9(a) and (b).
(a) Force in each spring = 2W.
\text { Deflection of weight } W, \delta_{s t}=2 \text { (deflection of spring } 1+\text { deflection of spring 2) } .
=2\left(\frac{2 W}{k_{1}}+\frac{2 W}{k_{2}}\right) .
=4 W\left(\frac{k_{1}+k_{2}}{k_{1} k_{2}}\right) .
Natural frequency, \omega_{n}=\sqrt{\frac{g}{\delta_{s t}}}=\sqrt{\frac{g k_{1} k_{2}}{4 W\left(k_{1}+k_{2}\right)}} .
=\sqrt{\frac{k_{1} k_{2}}{4 m\left(k_{1}+k_{2}\right)}} rad / s .
(b) Force in spring 1 = W.
\text { Force in spring } 2=\frac{W}{2} .
\text { Deflection of } W, \delta_{s t}=\text { Deflection of spring } 1+\text { Deflection of spring } 2 .
=\frac{W}{k_{1}}+\frac{1}{2}\left(\frac{W}{2} \times \frac{1}{k_{2}}\right) .
=W\left[\frac{1}{k_{1}}+\frac{1}{4 k_{2}}\right] .
=W\left(\frac{k_{1}+4 k_{2}}{4 k_{1} k_{2}}\right) .
\omega_{n}=\sqrt{\frac{g}{\delta_{s t}}}=\sqrt{\frac{4 k_{1} k_{2}}{m\left(k_{1}+4 k_{2}\right)}} rad / s .