Question 4.P.12: Calculate the probability of finding a particle in the class...

Calculate the probability of finding a particle in the classically forbidden region of a harmonic oscillator for the states n = 0, 1, 2, 3, 4. Are these results compatible with their classical counterparts?

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The classical turning points are defined by E_{n} =V(x_{n} ) or by \hbar \omega (n+\frac{1}{2} )=\frac{1}{2}m\omega ^{2} x^{2}_{n}; that is, x_{n}=\pm \sqrt{\hbar /(m \omega )} \sqrt{2n+1}. Thus, the probability of finding a particle in the classically forbidden region for a state \psi _{n}(x) is

P_{n} =\int_{-\infty }^{-|x_{n}|}\left|\psi _{n}(x)\right| ^{2} dx+\int_{|x_{n}|}^{+\infty }\left|\psi _{n}(x)\right| ^{2}dx=2 \int_{|x_{n}|}^{+\infty }\left|\psi _{n}(x)\right| ^{2}dx,       (4.297)

where \psi _{n}(x) is given in (4.172),

\psi _{n}(x)=\frac{1}{\sqrt{\pi }2^{n}n!x_{0}} e^{-x^{2}/2 x^{2}_{0}} H_{n}\left(\frac{x}{x_{0} } \right) .           (4.172)

\psi _{n}(x)=1/\sqrt{\sqrt{\pi }2^{n}n!x_{0} } e^{-x^{2} /2x^{2}_{0}}H_{n}(x/x_{0}), where x_{0} is given by x_{0}=\sqrt{\hbar /(m\omega )}. Using the change of variable y=x/x_{0}, we can rewrite P_{n} as

P_{n}=\frac{2}{\sqrt{\pi }2^{n}n! } \int_{\sqrt{2n+1} }^{+\infty }e^{-y^{2}}H^{2}_{n}(x) dy,                      (4.298)

where the Hermite polynomials H_{n}(y) are listed in (4.120).

H_{0}(y)=1,          H_{1}(y)=2y,

 

H_{2}(y)=4y^{2} -2,          H_{3}(y)=8y^{2}-12y,

 

H_{4}(y)=16y^{4}-48y^{2}-12y+12,         H_{5}(y)=32y^{5}-160y^{3}+120y.

The integral in (4.298) can be evaluated only numerically. Using the numerical values

\int_{1}^{\infty } e^{-y^{2}}dy=0.1394,           \int_{\sqrt{3} }^{\infty }y^{2}e^{-y^{2}}dy=0.0495,            (4.299)

 

\int_{\sqrt{5} }^{\infty }(4y^{2}-2)^{2} e^{-y^{2}}dy=0.6740,           \int_{\sqrt{7} }^{\infty }(8y^{3}-12y)^{2}e^{-y^{2}}dy=3.6363,                      (4.300)

 

\int_{\sqrt{9} }^{\infty }(16y^{4}-48y^{2}+12)^{2}e^{-y^{2}}dy=26.86,                  (4.301)

we obtain

P_{0}=0.1573,           P_{1}=0.1116,           P_{2}=0.095 069,        (4.302)

 

P_{3}=0.085 48,               P_{4}=0.078 93.        (4.303)

This shows that the probability decreases as n increases, so it would be very small for very large values of n. It is therefore unlikely to find the particle in the classically forbidden region when the particle is in a very highly excited state. This is what we expect, since the classical approximation is recovered in the limit of high values of n.

Related Answered Questions