Question 9.22: Calculate the reflection coefficient for light at an air-to-...

Calculate the reflection coefficient for light at an air-to-silver interface \left(\mu_{1}=\mu_{2}=\mu_{0}, \epsilon_{1}=\epsilon_{0}, \sigma=6 \times 10^{7}(\Omega \cdot m )^{-1}\right) , at optical frequencies (\omega=\left.4 \times 10^{15} / s \right) .

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

According to Eq. 9.147, R=\left|\frac{\tilde{E}_{0_{R}}}{\tilde{E}_{0_{I}}}\right|^{2}=\left|\frac{1-\tilde{\beta}}{1+\tilde{\beta}}\right|^{2}=\left(\frac{1-\tilde{\beta}}{1+\tilde{\beta}}\right)\left(\frac{1-\tilde{\beta}^{*}}{1+\tilde{\beta}^{*}}\right) , where =\frac{\mu_{1} v_{1}}{\mu_{2} \omega}\left(k_{2}+i \kappa_{2}\right) (Eqs. 9.125 and 9.146).

\tilde{E}_{0_{R}}=\left(\frac{1-\tilde{\beta}}{1+\tilde{\beta}}\right) \tilde{E}_{0_{I}}, \quad \tilde{E}_{0_{T}}=\left(\frac{2}{1+\tilde{\beta}}\right) \tilde{E}_{0_{I}}                        (9.147)

\tilde{k}=k+i \kappa                             (9.125)

\tilde{\beta} \equiv \frac{\mu_{1} v_{1}}{\mu_{2} \omega} \tilde{k}_{2}                                (9.146)

Since silver is a good conductor (\sigma \gg \epsilon \omega) , Eq. 9.126 reduces to

k \equiv \omega \sqrt{\frac{\epsilon \mu}{2}}\left[\sqrt{1+\left(\frac{\sigma}{\epsilon \omega}\right)^{2}}+1\right]^{1 / 2}, \quad \kappa \equiv \omega \sqrt{\frac{\epsilon \mu}{2}}\left[\sqrt{1+\left(\frac{\sigma}{\epsilon \omega}\right)^{2}}-1\right]^{1 / 2}                           (9.126)

\kappa_{2} \cong k_{2} \cong \omega \sqrt{\frac{\epsilon_{2} \mu_{2}}{2}} \sqrt{\frac{\sigma}{\epsilon_{2} \omega}}=\sqrt{\frac{\sigma \omega \mu_{2}}{2}}, \text { so } \tilde{\beta}=\frac{\mu_{1} v_{1}}{\mu_{2} \omega} \sqrt{\frac{\sigma \omega \mu_{2}}{2}}(1+i)=\mu_{1} v_{1} \sqrt{\frac{\sigma}{2 \mu_{2} \omega}}(1+i) .

\text { Let } \gamma \equiv \mu_{1} v_{1} \sqrt{\frac{\sigma}{2 \mu_{2} \omega}}=\mu_{0} c \sqrt{\frac{\sigma}{2 \mu_{0} \omega}}=c \sqrt{\frac{\sigma \mu_{0}}{2 \omega}}=\left(3 \times 10^{8}\right) \sqrt{\frac{\left(6 \times 10^{7}\right)\left(4 \pi \times 10^{-7}\right)}{(2)\left(4 \times 10^{15}\right)}}=29 .

Then  R=\left(\frac{1-\gamma-i \gamma}{1+\gamma+i \gamma}\right)\left(\frac{1-\gamma+i \gamma}{1+\gamma-i \gamma}\right)=\frac{(1-\gamma)^{2}+\gamma^{2}}{(1+\gamma)^{2}+\gamma^{2}}=0.93 . Evidently 93% of the light is reflected.

Related Answered Questions