Calculate the torque exerted on the square loop shown in Fig. 6.6, due to the circular loop (assume r is much larger than a or b). If the square loop is free to rotate, what will its equilibrium orientation be?
Calculate the torque exerted on the square loop shown in Fig. 6.6, due to the circular loop (assume r is much larger than a or b). If the square loop is free to rotate, what will its equilibrium orientation be?
N = m _{2} \times B _{1} ; B _{1}=\frac{\mu_{0}}{4 \pi} \frac{1}{r^{3}}\left[3\left( m _{1} \cdot \hat{ r }\right) \hat{ r }- m _{1}\right] ; \hat{ r }=\hat{ y } ; m _{1}=m_{1} \hat{ z } ; m _{2}=m_{2} \hat{ y } . \quad B _{1}=-\frac{\mu_{0}}{4 \pi} \frac{m_{1}}{r^{3}} \hat{ z }.
N =-\frac{\mu_{0}}{4 \pi} \frac{m_{1} m_{2}}{r^{3}}(\hat{ y } \times \hat{ z })=-\frac{\mu_{0}}{4 \pi} \frac{m_{1} m_{2}}{r^{3}} \hat{ x } . \text { Here } m_{1}=\pi a^{2} I, m_{2}=b^{2} I . \text { So } N =-\frac{\mu_{0}}{4} \frac{(a b I)^{2}}{r^{3}} \hat{ x } .
Final orientation : downward (-\hat{ z }) .