Question 11.P.4: Calculate the total cross section for the low-energy scatter...

Calculate the total cross section for the low-energy scattering of a particle of mass m from an attractive square well potential V(r)=-V_{0} for r < a and V(r) = 0 for r > a, with V_{0}>0.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Since the scattering is dominated at low energies by the s partial waves, l = 0, the Schrödinger equation for the radial function is given by

-\frac{\hbar^{2}}{2 m} \frac{d^{2} u(r)}{d r^{2}}-V_{0} u(r)=E u(r) \quad(r<a),             (11.164)

 

-\frac{\hbar^{2}}{2 m} \frac{d^{2} u(r)}{d r^{2}}=E u(r) \quad(r>a),                  (11.165)

where u(r) = r R(r). The solutions of these equations for positive energy states are

u(r)= \begin{cases}u_{1}(r)=A \sin \left(k_{1} r\right), & r<a, \\ u_{2}(r)=B \sin \left(k_{2} r+\delta_{0}\right), & r>a,\end{cases}                     (11.166)

where k_{1}^{2}=2 m\left(E+V_{0}\right) / \hbar^{2} and k_{2}^{2}=2 m E / \hbar^{2}. The continuity of u(r) and its first derivative, u^{\prime}(r)=d u(r) / d r, at r = a yield

\left.\frac{u_{2}(r)}{u_{2}^{\prime}(r)}\right|_{r=a}=\left.\frac{u_{1}(r)}{u_{1}^{\prime}(r)}\right|_{r=a} \Longrightarrow \frac{1}{k_{2}} \tan \left(k_{2} a+\delta_{0}\right)=\frac{1}{k_{1}} \tan \left(k_{1} a\right),                 (11.167)

which yields

\delta_{0}=-k_{2} a+\tan ^{-1}\left[\frac{k_{2}}{k_{1}} \tan \left(k_{1} a\right)\right].                    (11.168)

Since

\tan \left(k_{2} a+\delta_{0}\right)=\frac{\sin \left(k_{2} a\right) \cos \delta_{0}+\cos \left(k_{2} a\right) \sin \delta_{0}}{\cos \left(k_{2} a\right) \cos \delta_{0}-\sin \left(k_{2} a\right) \sin \delta_{0}}=\frac{\tan \left(k_{2} a\right)+\tan \delta_{0}}{1-\tan \left(k_{2} a\right) \tan \delta_{0}},            (11.169)

we can reduce Eq. (11.167) to

\tan \delta_{0}=\frac{k_{2} \tan \left(k_{1} a\right)-k_{1} \tan \left(k_{2} a\right)}{k_{1}+k_{2} \tan \left(k_{1} a\right) \tan \left(k_{2} a\right)}.                (11.170)

Using the relation \sin ^{2} \delta_{0}=1 /\left(1+1 / \tan ^{2} \delta_{0}\right), we can write

\sin ^{2} \delta_{0}=\left[1+\left(\frac{k_{1}+k_{2} \tan \left(k_{1} a\right) \tan \left(k_{2} a\right)}{k_{2} \tan \left(k_{1} a\right)-k_{1} \tan \left(k_{2} a\right)}\right)^{2}\right]^{-1},               (11.171)

which, when inserted into (11.104),

\frac{d \sigma}{d \Omega}=\left|f_{0}\right|^{2}=\frac{1}{k^{2}} \sin ^{2} \delta_{0}, \quad \sigma=4 \pi\left|f_{0}\right|^{2}=\frac{4 \pi}{k^{2}} \sin ^{2} \delta_{0} \quad(l=0).             (11.104)

leads to

\sigma_{0}=\frac{4 \pi}{k_{1}^{2}} \sin ^{2} \delta_{0}=\frac{4 \pi}{k_{1}^{2}}\left[1+\left(\frac{k_{1}+k_{2} \tan \left(k_{1} a\right) \tan \left(k_{2} a\right)}{k_{2} \tan \left(k_{1} a\right)-k_{1} \tan \left(k_{2} a\right)}\right)^{2}\right]^{-1}.                   (11.172)

If k_{2} a \ll 1 then (11.170) becomes \tan \delta_{0} \simeq \frac{\tan \left(k_{1} a\right)-k_{1} a}{k_{1} / k_{2}+k_{2} a \tan \left(k_{1} a\right)}, since \tan \left(k_{2} a\right) \simeq k_{2} a. Thus, if k_{2} a \ll 1 and if E (the scattering energy) is such that \tan \left(k_{1} a\right) \simeq k_{1} a, we have \tan \delta_{0}=0; hence there will be no s-wave scattering and the cross section vanishes. Note that if the square well potential is extended to a hard sphere potential, i.e., E → 0 and V_{0} \rightarrow \infty, equation (11.168) yields the phase shift of scattering from a hard sphere \delta_{0}=-k a, since \left(k_{2} / k_{1}\right) \tan \left(k_{1} a\right) \rightarrow 0.

Related Answered Questions