Question 2.4: Calculate (x) ,(x^2) , (p) , (p^2) , σx and σp, for the nth ...

Calculate \left\langle x\right\rangle ,\left\langle x^2\right\rangle , \left\langle p\right\rangle , \left\langle p^2\right\rangle , σ_x and σ_p , for the nth stationary state of the infinite square well. Check that the uncertainty principle is satisfied. Which state comes closest to the uncertainty limit?.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

\langle x\rangle=\int x|\psi|^{2} d x=\frac{2}{a} \int_{0}^{a} x \sin ^{2}\left(\frac{n \pi}{a} x\right) d x .    Let y \equiv \frac{n \pi}{a} x , so dx = \frac{a}{nπ}dy ; y : 0→ nπ.

=\frac{2}{a}\left(\frac{a}{n \pi}\right)^{2} \int_{0}^{n \pi} y \sin ^{2} y d y=\left.\frac{2 a}{n^{2} \pi^{2}}\left[\frac{y^{2}}{4}-\frac{y \sin 2 y}{4}-\frac{\cos 2 y}{8}\right]\right|_{0} ^{n \pi}

=\frac{2 a}{n^{2} \pi^{2}}\left[\frac{n^{2} \pi^{2}}{4}-\frac{\cos 2 n \pi}{8}+\frac{1}{8}\right]= \frac{a}{2} (Independent of n.)

\left\langle x^{2}\right\rangle=\frac{2}{a} \int_{0}^{a} x^{2} \sin ^{2}\left(\frac{n \pi}{a} x\right) d x=\frac{2}{a}\left(\frac{a}{n \pi}\right)^{3} \int_{0}^{n \pi} y^{2} \sin ^{2} y d y =\frac{2 a^{2}}{(n \pi)^{3}}\left[\frac{y^{3}}{6}-\left(\frac{y^{2}}{4}-\frac{1}{8}\right) \sin 2 y-\frac{y \cos 2 y}{4}\right]_{0}^{n \pi}

=\frac{2 a^{2}}{(n \pi)^{3}}\left[\frac{(n \pi)^{3}}{6}-\frac{n \pi \cos (2 n \pi)}{4}\right] = a^{2}\left[\frac{1}{3}-\frac{1}{2(n \pi)^{2}}\right] .

\langle p\rangle=m \frac{d\langle x\rangle}{d t}=0

(Note : Eq. 1.33 is much faster than Eq.1.35:)

\left\langle p^{2}\right\rangle=\int \psi_{n}^{*}\left(\frac{\hbar}{i} \frac{d}{d x}\right)^{2} \psi_{n} d x=-\hbar^{2} \int \psi_{n}^{*}\left(\frac{d^{2} \psi_{n}}{d x^{2}}\right) d x

=\left(-\hbar^{2}\right)\left(-\frac{2 m E_{n}}{\hbar^{2}}\right) \int \psi_{n}^{*} \psi_{n} d x=2 m E_{n} = \left(\frac{n \pi \hbar}{a}\right)^{2} .

\sigma_{x}^{2}=\left\langle x^{2}\right\rangle-\langle x\rangle^{2}=a^{2}\left(\frac{1}{3}-\frac{1}{2(n \pi)^{2}}-\frac{1}{4}\right)=\frac{a^{2}}{4}\left(\frac{1}{3}-\frac{2}{(n \pi)^{2}}\right) ;    \sigma_{x}=\frac{a}{2} \sqrt{\frac{1}{3}-\frac{2}{(n \pi)^{2}}} .

\sigma_{p}^{2}=\left\langle p^{2}\right\rangle-\langle p\rangle^{2}=\left(\frac{n \pi \hbar}{a}\right)^{2} ;    \sigma_{p}=\frac{n \pi \hbar}{a} .

\sigma_{x} \sigma_{p} = \frac{\hbar}{2} \sqrt{\frac{(n \pi)^{2}}{3}-2} .

The product \sigma_{x} \sigma_{p} is smallest for n = 1;  in that case, \sigma_{x} \sigma_{p}=\frac{\hbar}{2} \sqrt{\frac{\pi^{2}}{3}-2}=(1.136) \hbar / 2>\hbar / 2 .

Related Answered Questions