Question 3.2: CALCULATING AVERAGE AND INSTANTANEOUSE ACCLERATION Let’s ret...

CALCULATING AVERAGE AND INSTANTANEOUSE ACCLERATION

Let’s return to the motions of the Mars rover in Example 3.1.

(a) Find the components of the average acceleration for the interval t = 0.0 s to t = 2.0 s.

(b) Find the instantaneous acceleration at t = 2.0 s.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

IDENTIFY and SET UP:

In Example 3.1 we found the components of the rover’s instantaneous velocity at any time t:

v_{x}=\frac{d x}{d t}=\left(-0.25 \mathrm{~m} / \mathrm{s}^{2}\right)(2 t)=\left(-0.50 \mathrm{~m} / \mathrm{s}^{2}\right) t

 

v_{y}=\frac{d y}{d t}=1.0 \mathrm{~m} / \mathrm{s}+\left(0.025 \mathrm{~m} / \mathrm{s}^{3}\right)\left(3 t^{2}\right)=1.0 \mathrm{~m} / \mathrm{s}+\left(0.075 \mathrm{~m} / \mathrm{s}^{3}\right) t^{2}

We’ll use the vector relationships among velocity, average acceleration, and instantaneous acceleration. In part (a) we determine the values of v_x and v_y at the beginning and end of the interval and then use Eq. (3.8)(\vec{a}_{\mathrm{av}}=\frac{\Delta \overrightarrow{\boldsymbol{v}}}{\Delta t}=\frac{\overrightarrow{\boldsymbol{v}}_{2}-\overrightarrow{\boldsymbol{v}}_{1}}{t_{2}-t_{1}}) to calculate the components of the average acceleration. In part (b) we obtain expressions for the instantaneous acceleration components at any time t by taking the time derivatives of the velocity components as in Eqs. (3.10) (a_{x}=\frac{d v_{x}}{d t} \quad a_{y}=\frac{d v_{y}}{d t} \quad a_{z}=\frac{d v_{z}}{d t}).

 

EXECUTE:

(a) In Example 3.1 we found that at t = 0.0 s the velocity components are

v_{x}=0.0 \mathrm{~m} / \mathrm{s} \quad v_{y}=1.0 \mathrm{~m} / \mathrm{s}

and that at t = 2.0 s the components are

v_{x}=-1.0 \mathrm{~m} / \mathrm{s} \quad v_{y}=1.3 \mathrm{~m} / \mathrm{s}

Thus the components of average acceleration in the interval t = 0.0 s to t = 2.0 s are

a_{\mathrm{av}-x}=\frac{\Delta v_{x}}{\Delta t}=\frac{-1.0 \mathrm{~m} / \mathrm{s}-0.0 \mathrm{~m} / \mathrm{s}}{2.0 \mathrm{~s}-0.0 \mathrm{~s}}=-0.50 \mathrm{~m} / \mathrm{s}^{2}

 

a_{\mathrm{av}-y}=\frac{\Delta v_{y}}{\Delta t}=\frac{1.3 \mathrm{~m} / \mathrm{s}-1.0 \mathrm{~m} / \mathrm{s}}{2.0 \mathrm{~s}-0.0 \mathrm{~s}}=0.15 \mathrm{~m} / \mathrm{s}^{2}

 

(b) Using Eqs. (3.10) (a_{x}=\frac{d v_{x}}{d t} \quad a_{y}=\frac{d v_{y}}{d t} \quad a_{z}=\frac{d v_{z}}{d t}), we find

a_{x}=\frac{d v_{x}}{d t}=-0.50 \mathrm{~m} / \mathrm{s}^{2} \quad a_{y}=\frac{d v_{y}}{d t}=\left(0.075 \mathrm{~m} / \mathrm{s}^{3}\right)(2 t)

Hence the instantaneous acceleration vector \overrightarrow{\boldsymbol{a}} at time t is

\vec{a}=a_{x} \hat{\imath}+a_{y} \hat{\jmath}=\left(-0.50 \mathrm{~m} / \mathrm{s}^{2}\right) \hat{\imath}+\left(0.15 \mathrm{~m} / \mathrm{s}^{3}\right) t \hat{\jmath}

At t = 2.0 s the components of acceleration and the acceleration vector are

a_{x}=-0.50 \mathrm{~m} / \mathrm{s}^{2} \quad a_{y}=\left(0.15 \mathrm{~m} / \mathrm{s}^{3}\right)(2.0 \mathrm{~s})=0.30 \mathrm{~m} / \mathrm{s}^{2} \vec{a}=\left(-0.50 \mathrm{~m} / \mathrm{s}^{2}\right) \hat{\imath}+\left(0.30 \mathrm{~m} / \mathrm{s}^{2}\right) \hat{\jmath}

The magnitude of acceleration at this time is

a=\sqrt{a_{x}^{2}+a_{y}^{2}}=\sqrt{\left(-0.50 \mathrm{~m} / \mathrm{s}^{2}\right)^{2}+\left(0.30 \mathrm{~m} / \mathrm{s}^{2}\right)^{2}}=0.58 \mathrm{~m} / \mathrm{s}^{2}

A sketch of this vector (Fig. 3.9) shows that the direction angle β of \overrightarrow{\boldsymbol{a}} with respect to the positive x-axis is between 90° and 180°.
From Eq. (3.7) (\tan \alpha=\frac{v_{y}}{v_{x}}) we have

\arctan \frac{a_{y}}{a_{x}}=\arctan \frac{0.30 \mathrm{~m} / \mathrm{s}^{2}}{-0.50 \mathrm{~m} / \mathrm{s}^{2}}=-31^{\circ}

Hence β = 180° + 1-31°2 = 149°.

EVALUATE: Figure 3.9 shows the rover’s path and the velocity and acceleration vectors at t = 0.0 s, 1.0 s, and 2.0 s. (Use the results of part (b) to calculate the instantaneous acceleration at t = 0.0 s and t = 1.0 s for yourself.) Note that \overrightarrow{\boldsymbol{v}} \text { and } \overrightarrow{\boldsymbol{a}} are not in the same direction at any of these times. The velocity vector \overrightarrow{\boldsymbol{v}} is tangent to the path at each point (as is always the case), and the acceleration vector \overrightarrow{\boldsymbol{a}} points toward the concave side of the path.

Related Answered Questions