Question 9.4.4: Calculation of the Fugacity of a Species in a Mixture by Two...

Calculation of the Fugacity of a Species in a Mixture by Two Methods

Compute the fugacity of both carbon dioxide and methane in an equimolar mixture at 500 K and 500 bar using (a) the Lewis-Randall rule and (b) the Peng-Robinson equation of state.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

a. The Lewis-Randall rule is

 

\bar{f}_{ i }(T, P, \underline{y})=y_{ i } f_{ i }(T, P)=y_{ i }\left(\frac{f}{P}\right)_{ i } P

 

From Fig. 7.4-1, we have

 

T_{r} P_{r} f / P
CO _{2} 1.644 6.78 ∼ 0.77
CH _{4} 2.623 10.87 ∼ 1.01*
*Since it is very difficult to read the fugacity coefficient curve in the range of the reduced temperature and pressure for methane in this problem, this entry was obtained from the tables inO.A.Hougen, K. M.Watson, and R.A. Ragatz, Chemical Process Principles, Part II, Thermodynamics, 2nd ed., John Wiley & Sons, New York (1959).

 

Thus

 

\bar{f}_{ CO _{2}}=0.5 \times 0.77 \times 500 bar =192.5 bar

 

and

 

\bar{f}_{ CH _{4}}=0.5 \times 1.01 \times 500 bar =252.5 bar

 

b. Using the Peng-Robinson equation of state (Eqs. 6.4-2 and 9.4-8 through 9.4-10) and Aspen Plus^R  or the computer programs discussed in Appendix B, we find, for k_{12}=0.0,

 

P=\frac{R T}{\underline{V}-b}-\frac{a(T)}{\underline{V}(\underline{V}+b)+b(\underline{V}-b)} (6.4-2)

 

\begin{aligned}a_{\operatorname{mix}} &=\sum_{ i =1}^{ C } \sum_{j=1}^{ C } y_{ i } y_{ j } a_{ ij } \\b_{\operatorname{mix}} &=\sum_{ i =1} y_{ i } b_{ i }\end{aligned} (9.4-8)

 

a_{ ij }=\sqrt{a_{ ii } a_{ jj }}\left(1-k_{ ij }\right)=a_{ ji } (9.4-9)

 

\begin{array}{l}\ln \frac{\bar{f}_{ i }^{ V }(T, P, \underline{y})}{y_{ i } P} \\\quad=\ln \bar{\phi}_{ i }^{ V }(T, P, \underline{y}) \\\quad=\frac{b_{ i }}{b_{ mix }}\left(Z_{ mix }^{ V }-1\right)-\ln \left(Z_{ mix }^{ V }-\frac{b_{ mix } P}{R T}\right)\\\quad-\frac{a_{ mix }}{2 \sqrt{2} b_{\text {mix }} R T}\left[\frac{2 \sum_{ j } y_{ j } a_{ ij }}{a_{ mix }}-\frac{b_{ i }}{b_{ mix }}\right] \ln \left[\frac{Z_{ mix }^{ V }+(1+\sqrt{2}) \frac{b_{ mix } P}{R T}}{Z^{ V }+(1-\sqrt{2}) \frac{b_{ mix } P}{R T}}\right]\\\quad =\frac{B_{ i }}{B_{ mix }}\left(Z_{ mix }^{ V }-1\right)-\ln \left(Z_{ mix }^{ V }-B_{ mix }\right)\\\quad -\frac{A_{ mix }}{2 \sqrt{2} B_{ mix }}\left[\frac{2 \sum_{ j } y_{ j } A_{ ij }}{A_{ mix }}-\frac{B_{ i }}{B_{ mix }}\right] \ln \left[\frac{Z_{ mix }^{ V }+(1+\sqrt{2}) B_{ mix }}{Z_{ mix }^{ V }+(1-\sqrt{2}) B_{ mix }}\right]\end{array} (9.4-10)

 

\bar{f}_{ CO _{2}}=208.71 bar \quad \text { and } \quad \bar{f}_{ CH _{4}}=264.72 bar

 

and using k_{12}=0.09 (from Table 9.4-1),

 

\bar{f}_{ CO _{2}}=212.81 bar \quad \text { and } \quad \bar{f}_{ CH _{4}}=269.35 bar

 

These last values should be the most accurate.

 

Table 9.4-1 Binary Interaction Parameters k_{12} for the Peng-Robinson Equation of State*
C _{2} H _{4} C _{2} H _{6} C _{3} H _{6} C _{3} H _{8} i- C _{4} H _{10} n- C _{4} H _{10} i- C _{5} H _{12} n- C _{6} H _{14} C _{6} H _{6} c- C _{6} H _{12} n- C _{7} H _{16} n- C _{8} H _{18} n- C _{10} H _{22} N _{2} CO CO _{2} SO _{2} H _{2} S
CH _{4} 0.022 -0.003 0.033 0.016 0.026 0.019 0.026 0.04 0.055 0.039 0.035 0.05 0.049 0.03 0.03 0.09 0.136 0.08
C _{2} H _{4} 0.01 0.092 0.031 0.014 0.025 0.086 -0.022 0.056
C _{2} H _{6} 0.089 0.001 -0.007 0.01 0.008 -0.04 0.042 0.018 0.007 0.019 0.014 0.044 0.026 0.13 0.086
C _{3} H _{6} 0.007 -0.014 0.09 0.026 0.093 0.08
C _{3} H _{8} -0.007 0.003 0.027 0.001 0.023 0.006 0 0 0.078 0.03 0.12 0.08
i- C _{4} H _{10} 0 0.1 0.04 0.13 0.047
n- C _{4} H _{10} 0.017 -0.006 0.003 0.007 0.008 0.087 0.04 0.135 0.07
i- C _{5} H _{12} 0.06 0.018 0.004 0.092 0.04 0.121 0.06
n- C _{5} H _{12} 0.01 -0.004 0.007 0 0.1 0.04 0.125 0.063
n- C _{6} H _{14} 0.013 -0.008 0.15 0.04 0.11 0.06
C _{6} H _{6} 0.001 0.003 0.1 0.164 0.11 0.077 0.015
c- C _{6} H _{12} 0.14 0.1 0.105
n- C _{7} H _{16} 0 0.1 0.04 0.1 0.06
n- C _{8} H _{18} 0.1 0.04 0.12 0.06
n- C _{10} H _{22} 0.11 0.04 0.114 0.033
N _{2} 0.012 -0.02 0.08 0.17
CO 0.03 0.054
CO _{2} 0.136 0.097
SO _{2}
H _{2} S
*Obtained from data in “Vapor-Liquid Equilibria for Mixtures of Low-Boiling Substances,” by H. Knapp, R. D¨oring, L. Oellrich, U. Pl¨ocker, and J. M. Prausnitz, DECHEMA Chemistry Data Series, Vol. VI, Frankfurt/Main, 1982, and other sources. Blanks indicate no data are available from which the k12 could be evaluated. In such case use estimates from mixtures of similar compounds.
9.4

Related Answered Questions