Question 7.4.8: Calculation of the Fugacity of Ice from Density Data Compute...

Calculation of the Fugacity of Ice from Density Data
Compute the fugacity of ice at −5°C and pressures of 0.1 MPa, 10 MPa, and 100 MPa.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

We assume that ice is incompressible over the range from 0.4 kPa to 100 MPa, so that its molar volume over this pressure range is

 

\underline{V}=\frac{18.015 \mathrm{~g} / \mathrm{mol}}{0.915 \mathrm{~g} / \mathrm{cc}}=19.69 \mathrm{cc} / \mathrm{mol}=1.969 \times 10^{-5} \mathrm{~m}^{3} / \mathrm{mol}

 

From Eq. 7.4-24b, we then have

 

f^{\mathrm{S}}(T, P)=P^{\mathrm{sat}}(T) \exp \left[\frac{\underline{V}^{\mathrm{S}}\left(P-P^{\text {sat }}(T)\right)}{R T}\right]                             (7.4-24b)

 

\begin{aligned}f_{\text {ice }}\left(-5^{\circ} \mathrm{C}, 0.1 \mathrm{MPa}\right) &=0.4 \mathrm{kPa} \exp \left[\frac{1.969 \times 10^{-5} \frac{\mathrm{m}^{3}}{\mathrm{~mol}} \times(0.1-0.0004) \mathrm{MPa}}{268.15 \mathrm{~K} \times 8.314 \times 10^{-6} \frac{\mathrm{MPa} \mathrm{m}^{3}}{\mathrm{~mol} \mathrm{~K}}}\right] \\\\&=0.4 \exp \left[8.797 \times 10^{-4}\right] \mathrm{kPa} \\\\&=0.4 \times 1.00088 \mathrm{kPa} \\\\&=0.4004 \mathrm{kPa}\end{aligned}

 

Similarly,

 

f_{\text {ice }}\left(-5^{\circ} \mathrm{C}, 10 \mathrm{MPa}\right)=0.4 \mathrm{kPa} \mathrm{exp}\left[\frac{1.969 \times 10^{-5} \frac{\mathrm{m}^{3}}{\mathrm{~mol}} \times(10-0.0004) \mathrm{MPa}}{268.15 \mathrm{~K} \times 8.314 \times 10^{-6} \frac{\mathrm{MPa} \mathrm{m}^{3}}{\mathrm{~mol} \mathrm{~K}}}\right]

 

= 0.4369 kPa

 

and

 

f_{\text {ice }}\left(-5^{\circ} \mathrm{C}, 10 \mathrm{MPa}\right)=0.4 \mathrm{kPa} \mathrm{exp}\left[\frac{1.969 \times 10^{-5} \frac{\mathrm{m}^{3}}{\mathrm{~mol}} \times(100-0.0004) \mathrm{MPa}}{268.15 \mathrm{~K} \times 8.314 \times 10^{-6} \frac{\mathrm{MPa} \mathrm{m}^{3}}{\mathrm{~mol} \mathrm{~K}}}\right]

 

= 0.9674 kPa

 

 

COMMENT

Generally, the change in fugacity of a condensed species (liquid or solid) with small pressure changes is small. Here we find that the fugacity of ice increases by 10 percent for an increase in pressure from the sublimation pressure to 100 bar, and by a factor of 2.5 as the pressure on ice increases to 1000 bar.

Related Answered Questions