Question 7.4.9: Calculation of the Fugacity of Naphthalene from Density Data...

Calculation of the Fugacity of Naphthalene from Density Data

The saturation pressure of solid naphthalene can be represented by

 

\log _{10} P^{\text {sat }}(\mathrm{bar})=8.722-\frac{3783}{T}     (T in K)

 

The density of the solid is 1.025 g/cm^3, and the molecular weight of naphthalene is 128.19.Estimate the fugacity of solid naphthalene at 35°C at its vapor pressure, and also at 1, 20,30, 40, 50, and 60 bar. (This information is used in Sec. 12.1 in a study of supercritical phase behavior.)

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

We start with Eq. 7.4-23 for a single solid phase with the assumption that the solid is incompressible:

 

f^{\mathrm{S}}(T, P)=P^{\mathrm{sat}}(T)\left(\frac{f}{P}\right)_{\mathrm{sat}, T} \exp \left[\frac{1}{R T} \sum_{J=1} \int_{P^{\mathrm{J}}}^{P^{\mathrm{J}+1}} \underline{V}^{\mathrm{J}} d P\right]                               (7.4.23)

 

f^{\mathrm{S}}(T, P)=P^{\mathrm{sat}}(T)\left(\frac{f}{P}\right)_{\mathrm{sat}, T} \exp \left[\frac{\underline{V}\left(P-P^{\text {sat }}(T)\right)}{R T}\right]

 

Using the data in the problem statement,

 

P^{\text {sat }}\left(35^{\circ} \mathrm{C}\right)=10^{[8.722-(3783 /(273.15+35))]}=2.789 \times 10^{-4} \mathrm{bar}

 

Since the sublimation pressure is so low, we can use (see Fig. 7.4-1)

 

\left(\frac{f}{P}\right)_{\mathrm{sat}}=1

 

Therefore,

 

f^{\mathrm{S}}\left(T=35^{\circ} \mathrm{C}, P^{\mathrm{sat}}\right)=2.789 \times 10^{-4} \mathrm{bar}

 

At any higher pressure, we have

 

\begin{aligned}&f^{\mathrm{S}}\left(T=35^{\circ} \mathrm{C}, P\right)=2.789 \times 10^{-4} \text { (bar) }\\\\&\times \exp \left[\frac{\frac{128.19}{1.025} \frac{\mathrm{cm}^{3}}{\mathrm{~mol}} \times\left(P-2.879 \times 10^{-4}\right) \text { bar } \times 10^{-6} \frac{\mathrm{m}^{3}}{\mathrm{~cm}^{3}}}{8.314 \times 10^{-5} \frac{\mathrm{bar} \mathrm{m}}{\mathrm{mol} \mathrm{K}} \times 308.15 \mathrm{~K}}\right]\end{aligned}

 

The result is

 

P (bar) f^s(3°C, P) (bar)
2.789 × 10^{−4} 2.789 × 10^{−4}
1 2.803 × 10^{−4}
10 2.933 × 10^{−4}
20 3.083 × 10^{−4}
30 3.241 × 10^{−4}
40 3.408 × 10^{−4}
50 3.582 × 10^{−4}
60 3.766 × 10^{−4}
7.4.1

Related Answered Questions