Calculation of the Fugacity of Saturated Steam
Compute the fugacity of saturated steam at 300°C.
Calculation of the Fugacity of Saturated Steam
Compute the fugacity of saturated steam at 300°C.
The saturation pressure of steam at 300°C is 8.581 MPa, and from Illustration 7.3-1 we have \hat{G}^{\mathrm{V}} = -520.5 kJ/kg and \underline{G}^{\mathrm{V}} = -9376.8 J/mol. Following the previous illustration, we have
\begin{aligned}G^{\mathrm{IG}}\left(300^{\circ} \mathrm{C}, 8.581 \mathrm{MPa}\right) &=\underline{G}^{\mathrm{IG}}\left(300^{\circ} \mathrm{C}, 0.01 \mathrm{MPa}\right)+\int_{0.01 \mathrm{MPa}}^{8.581 \mathrm{MPa}} \frac{R T}{P} d P \\\\&=-40409+8.314 \times 573.15 \ln 858.1 \\\\&=-8221.6 \frac{\mathrm{J}}{\mathrm{mol}}\end{aligned}
Therefore,
\begin{aligned}f^{\mathrm{V}}\left(300^{\circ} \mathrm{C}, 8.581 \mathrm{MPa}\right) &=8.581 \mathrm{MPa} \exp \left[\frac{-9376.8-(-8221.6)}{8.314 \times 573.15}\right] \\\\&=8.581 \mathrm{MPa} \times 0.7847 \\\\&=6.7337 \mathrm{MPa}\end{aligned}
COMMENT
Note that since, at equilibrium, f^{\mathrm{V}}=f^{\mathrm{L}}, it is also true that
f^{\mathrm{L}}\left(300^{\circ} \mathrm{C}, 8.581 \mathrm{MPa}\right)=6.7337 \mathrm{MPa}