Question 8.5.1: Calculation of the Standard Heat of Reaction at 25°C Compute...

Calculation of the Standard Heat of Reaction at 25°C

Compute the standard heat of reaction for the hydrogenation of benzene to cyclohexane,

C _{6} H _{6}+3 H _{2} \longrightarrow C _{6} H _{12}

from the standard-heat-of-combustion data.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The standard heat of reaction can, in principle, be computed from Eq. 8.5-3; however, for illustration, we will use the heat of combustion for cyclohexane. From the standard heat-of-combustion data in Appendix A.V, we have \Delta_{ c } \underline{H}^{\circ}=-3919906 J/mol of cyclohexane for the following reaction:

 

\Delta_{ rxn } H^{\circ}(T, P=1 bar )=\sum_{ i } \nu_{ i } \Delta_{ f } \underline{H}_{ i }^{\circ}(T, P=1 bar ) (8.5-3)

 

C _{6} H _{12}( l )+9 O _{2} \rightarrow 6 CO _{2}+6 H _{2} O ( l )

 

Thus

 

\Delta_{ c } \underline{H}_{ C _{6} H _{12}}^{\circ}=6 \underline{H}_{ CO _{2}}+6 \underline{H}_{ H _{2} O }-\underline{H}_{ C _{6} H _{12}}-9 \underline{H}_{ O _{2}}=-3919906 J / mol

 

or

 

\underline{H}_{ C _{6} H _{12}}=-\Delta_{ c } \underline{H}_{ C _{6} H _{12}}^{\circ}-9 \underline{H}_{ O _{2}}+6 \underline{H}_{ CO _{2}}+6 \underline{H}_{ H _{2} O }

 

Similarly,

 

\underline{H}_{ C _{6} H _{6}}=-\Delta_{ c } \underline{H}_{ C _{6} H _{6}}^{\circ}-7 \frac{1}{2} \underline{H}_{ O _{2}}+6 \underline{H}_{ CO _{2}}+3 \underline{H}_{ H _{2} O }

 

and

 

3 \underline{H}_{ H _{2}}=-3 \Delta_{ c } \underline{H}_{ H _{2}}^{\circ}-1 \frac{1}{2} \underline{H}_{ O _{2}}+3 \underline{H}_{ H _{2} O }

 

Therefore,

 

\begin{aligned}\Delta_{ rxn } \underline{H}^{\circ}=&-\Delta_{ c } \underline{H}_{ C _{6} H _{12}}^{\circ}-9 \underline{H}_{ O _{2}}+6 \underline{H}_{ CO _{2}}+6 \underline{H}_{ H _{2} O }+\Delta_{ c } \underline{H}_{ C _{6} H _{6}}^{\circ} \\&+7 \frac{1}{2} \underline{H}_{ O _{2}}-6 \underline{H}_{ CO _{2}}-3 \underline{H}_{ H _{2} O }+3 \Delta_{ c } \underline{H}_{ H _{2}}^{\circ}+1 \frac{1}{2} \underline{H}_{ O _{2}}-3 \underline{H}_{ H _{2} O } \\=&-\Delta_{ c } \underline{H}_{ C _{6} H _{12}}^{\circ}+\Delta_{ c } \underline{H}_{ C _{6} H _{6}}^{\circ}+3 \Delta_{ c } \underline{H}_{ H _{2}}=-\sum_{ i } \nu_{ i } \Delta_{ c } \underline{H}_{ i }^{\circ} \\=& 3919906-3267620-3 \times 285840=-205234 \frac{ J }{\text { mol benzene }} \\=&-205.23 \frac{ kJ }{\text { mol benzene }}\end{aligned}

 

Comment

Note that in the final equation, \Delta_{ rxn } H^{\circ}=-\sum \nu_{ i } \Delta_{ c } \underline{H}_{ i }^{\circ} the enthalpies of the reference-state atomic species cancel, as they must due to conservation of atomic species on chemical reaction. Aspen Plus^R can be used to solve this illustration as shown inWiley website for this book in the folder Aspen Illustrations>Chapter 8>8.5-1. The calculation is done there using the RStoic reactor block in the Simulation mode with the ideal gas model. Using 1 kmol/hr flow rate of benzene with an isothermal 25◦C reactor. Looking the Results Summary>Model gives in a heat duty of −57272.2

 

\begin{aligned}\text { Watts } &=-57272.2 \frac{ J }{ S } \times 3600 \frac{ S }{ hr } \times \frac{1 hr }{1 kmol \text { benzene }} \times 1 \frac{ kmol }{10^{3} mol } \times \frac{1 kJ }{10^{3} mol } \\&=-206.18 \frac{ kJ }{ mol \text { benzene }}\end{aligned}

 

This is in agreement with the result above.

Related Answered Questions