Calculation of the Standard Heat of Reaction at 25°C
Compute the standard heat of reaction for the hydrogenation of benzene to cyclohexane,
C _{6} H _{6}+3 H _{2} \longrightarrow C _{6} H _{12}from the standard-heat-of-combustion data.
Calculation of the Standard Heat of Reaction at 25°C
Compute the standard heat of reaction for the hydrogenation of benzene to cyclohexane,
C _{6} H _{6}+3 H _{2} \longrightarrow C _{6} H _{12}from the standard-heat-of-combustion data.
The standard heat of reaction can, in principle, be computed from Eq. 8.5-3; however, for illustration, we will use the heat of combustion for cyclohexane. From the standard heat-of-combustion data in Appendix A.V, we have \Delta_{ c } \underline{H}^{\circ}=-3919906 J/mol of cyclohexane for the following reaction:
\Delta_{ rxn } H^{\circ}(T, P=1 bar )=\sum_{ i } \nu_{ i } \Delta_{ f } \underline{H}_{ i }^{\circ}(T, P=1 bar ) (8.5-3)
C _{6} H _{12}( l )+9 O _{2} \rightarrow 6 CO _{2}+6 H _{2} O ( l )
Thus
\Delta_{ c } \underline{H}_{ C _{6} H _{12}}^{\circ}=6 \underline{H}_{ CO _{2}}+6 \underline{H}_{ H _{2} O }-\underline{H}_{ C _{6} H _{12}}-9 \underline{H}_{ O _{2}}=-3919906 J / mol
or
\underline{H}_{ C _{6} H _{12}}=-\Delta_{ c } \underline{H}_{ C _{6} H _{12}}^{\circ}-9 \underline{H}_{ O _{2}}+6 \underline{H}_{ CO _{2}}+6 \underline{H}_{ H _{2} O }
Similarly,
\underline{H}_{ C _{6} H _{6}}=-\Delta_{ c } \underline{H}_{ C _{6} H _{6}}^{\circ}-7 \frac{1}{2} \underline{H}_{ O _{2}}+6 \underline{H}_{ CO _{2}}+3 \underline{H}_{ H _{2} O }
and
3 \underline{H}_{ H _{2}}=-3 \Delta_{ c } \underline{H}_{ H _{2}}^{\circ}-1 \frac{1}{2} \underline{H}_{ O _{2}}+3 \underline{H}_{ H _{2} O }
Therefore,
\begin{aligned}\Delta_{ rxn } \underline{H}^{\circ}=&-\Delta_{ c } \underline{H}_{ C _{6} H _{12}}^{\circ}-9 \underline{H}_{ O _{2}}+6 \underline{H}_{ CO _{2}}+6 \underline{H}_{ H _{2} O }+\Delta_{ c } \underline{H}_{ C _{6} H _{6}}^{\circ} \\&+7 \frac{1}{2} \underline{H}_{ O _{2}}-6 \underline{H}_{ CO _{2}}-3 \underline{H}_{ H _{2} O }+3 \Delta_{ c } \underline{H}_{ H _{2}}^{\circ}+1 \frac{1}{2} \underline{H}_{ O _{2}}-3 \underline{H}_{ H _{2} O } \\=&-\Delta_{ c } \underline{H}_{ C _{6} H _{12}}^{\circ}+\Delta_{ c } \underline{H}_{ C _{6} H _{6}}^{\circ}+3 \Delta_{ c } \underline{H}_{ H _{2}}=-\sum_{ i } \nu_{ i } \Delta_{ c } \underline{H}_{ i }^{\circ} \\=& 3919906-3267620-3 \times 285840=-205234 \frac{ J }{\text { mol benzene }} \\=&-205.23 \frac{ kJ }{\text { mol benzene }}\end{aligned}
Comment
Note that in the final equation, \Delta_{ rxn } H^{\circ}=-\sum \nu_{ i } \Delta_{ c } \underline{H}_{ i }^{\circ} the enthalpies of the reference-state atomic species cancel, as they must due to conservation of atomic species on chemical reaction. Aspen Plus^R can be used to solve this illustration as shown inWiley website for this book in the folder Aspen Illustrations>Chapter 8>8.5-1. The calculation is done there using the RStoic reactor block in the Simulation mode with the ideal gas model. Using 1 kmol/hr flow rate of benzene with an isothermal 25◦C reactor. Looking the Results Summary>Model gives in a heat duty of −57272.2
\begin{aligned}\text { Watts } &=-57272.2 \frac{ J }{ S } \times 3600 \frac{ S }{ hr } \times \frac{1 hr }{1 kmol \text { benzene }} \times 1 \frac{ kmol }{10^{3} mol } \times \frac{1 kJ }{10^{3} mol } \\&=-206.18 \frac{ kJ }{ mol \text { benzene }}\end{aligned}
This is in agreement with the result above.