Question 1.58: Check Stokes’ theorem for the function v = y ˆz, using the t...

Check Stokes’ theorem for the function v = y \hat{z} , using the triangular surface shown in Fig. 1.51. [Answer: a^2]

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

v · dl = y dz.

(1)   Left side: z = a − x; dz = −dx; y = 0. Therefore ∫v · dl = 0.

(2)   Bottom: dz = 0. Therefore  ∫v · dl = 0.

(3)   Back: z = a −\frac{1}{2} y;  dz = −1/2  dy;   y : 2a\rightarrow 0.  \int{}v · dl =\int\limits_{2a}^{0}{}y\left(-\frac{1}{2}dy \right)=-\frac{1}{2} \frac{y^2}{2}\mid ^{0}_{2a} =\frac{4a^2}{4}=a^2 .

Meanwhile, ∇\times v=\hat{x},  so  \int{}\left(∇\times v\right) · da is the projection of this surface on the xy plane =\frac{1}{2}\cdot a\cdot 2a=a^2 .

Related Answered Questions

(d) ⇒ (a): ∇×F = ∇×(−∇U) = 0 (Eq. 1.44 – curl of g...