Question 3.42: Coherent states of the harmonic oscillator. Among the statio...

Coherent states of the harmonic oscillator. Among the stationary states of the harmonic oscillator (Equation 2.68) only n = 0 hits the uncertainty limit \left(\sigma_{x} \sigma_{p}=\hbar / 2\right) ; in general, \sigma_{x} \sigma_{p}=(2 n+1) \hbar / 2 , as you found in Problem 2.12. But certain linear combinations (known as coherent states) also minimize the uncertainty product. They are (as it turns out) eigenfunctions of the lowering operator

\psi_{n}=\frac{1}{\sqrt{n !}}\left(\hat{a}_{+}\right)^{n} \psi_{0}     (2.68).

a_{-}|\alpha\rangle=\alpha|\alpha\rangle .

(the eigenvalue α can be any complex number).

(a) Calculate 〈x〉 , 〈x²〉, 〈p〉, 〈p²〉 in the state |α〉. Hint: Use the technique in Example 2.5, and remember that a_{+} is the hermitian conjugate of a_{-} . Do not assume α is real.

(b) Find \sigma_{x} \text { and } \sigma_{p} ; show that \sigma_{x} \sigma_{p}=\hbar / 2 .

(c) Like any other wave function, a coherent state can be expanded in terms of energy eigenstates:

|\alpha\rangle=\sum_{n=0}^{\infty} c_{n}|n\rangle .

Show that the expansion coefficients are

c_{n}=\frac{\alpha^{n}}{\sqrt{n !}} c_{0} .

(d) Determine by normalizing |α〉. Answer: \exp \left(-|\alpha|^{2} / 2\right) .

(e) Now put in the time dependence:

|n\rangle \rightarrow e^{-i E_{n} t / \hbar}|n\rangle ,

and show that |α (t) | remains an eigenstate of a_{-} , but the eigenvalue evolves in time:

\alpha(t)=e^{-i \omega t} \alpha .

So a coherent state stays coherent, and continues to minimize the uncertainty product.

(f) Based on your answers to (a), (b), and (e), find 〈x〉 and \sigma_{x} as functions of time. It helps if you write the complex number α as

\alpha=C \sqrt{\frac{m \omega}{2 \hbar}} e^{i \phi} .

for real numbers C and ϕ. Comment: In a sense, coherent states behave quasi-classically.

(g) Is the ground state (|n=0\rangle) itself a coherent state? If so, what is the eigenvalue?

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) \langle x\rangle=\langle\alpha \mid x \alpha\rangle=\sqrt{\frac{\hbar}{2 m \omega}}\left\langle\alpha \mid\left(a_{+}+a_{-}\right) \alpha\right\rangle=\sqrt{\frac{\hbar}{2 m \omega}}\left(\left\langle a_{-} \alpha \mid \alpha\right\rangle+\left\langle\alpha \mid a_{-} \alpha\right\rangle\right)= \sqrt{\frac{\hbar}{2 m \omega}}\left(\alpha+\alpha^{*}\right) .

x^{2}=\frac{\hbar}{2 m \omega}\left(a_{+}^{2}+a_{+} a_{-}+a_{-} a_{+}+a_{-}^{2}\right) .  But a_{-} a_{+}=\left[a_{-}, a_{+}\right]+a_{+} a_{-}=1+a_{+} a_{-}   (Eq. 2.55):

\hat{a}_{+} \hat{a}_{-}=\frac{1}{\hbar \omega} \hat{H}-\frac{1}{2}       (2.55).

=\frac{\hbar}{2 m \omega}\left(a_{+}^{2}+2 a_{+} a_{-}+1+a_{-}^{2}\right) .

\left\langle x^{2}\right\rangle=\frac{\hbar}{2 m \omega}\left\langle\alpha \mid\left(a_{+}^{2}+2 a_{+} a_{-}+1+a_{-}^{2}\right) \alpha\right\rangle=\frac{\hbar}{2 m \omega}\left(\left\langle a_{-}^{2} \alpha \mid \alpha\right\rangle+2\left\langle a_{-} \alpha \mid a_{-} \alpha\right\rangle+\langle\alpha \mid \alpha\rangle+\left\langle\alpha \mid a_{-}^{2} \alpha\right\rangle\right) .

=\frac{\hbar}{2 m\omega}\left[\left(\alpha^{*}\right)^{2}+2\left(\alpha^{*}\right) \alpha+1+\alpha^{2}\right]= \frac{\hbar}{2 m \omega}\left[1+\left(\alpha+\alpha^{*}\right)^{2}\right] .

\langle p\rangle=\langle\alpha \mid p \alpha\rangle=i \sqrt{\frac{\hbar m \omega}{2}}\left\langle\alpha \mid\left(a_{+}-a_{-}\right) \alpha\right\rangle=i \sqrt{\frac{\hbar m \omega}{2}}\left(\left\langle a_{-} \alpha \mid \alpha\right\rangle-\left\langle\alpha \mid a_{-} \alpha\right\rangle\right)=-i \sqrt{\frac{\hbar m \omega}{2}}\left(\alpha-\alpha^{*}\right).

p^{2}=-\frac{\hbar m \omega}{2}\left(a_{+}^{2}-a_{+} a_{-}-a_{-} a_{+}+a_{-}^{2}\right)=-\frac{\hbar m \omega}{2}\left(a_{+}^{2}-2 a_{+} a_{-}-1+a_{-}^{2}\right) .

=-\frac{\hbar m \omega}{2}\left[\left(\alpha^{*}\right)^{2}-2\left(\alpha^{*}\right) \alpha-1+\alpha^{2}\right]=\frac{\hbar m \omega}{2}\left[1-\left(\alpha-\alpha^{*}\right)^{2}\right] .

(b)

\sigma_{x}^{2}=\left\langle x^{2}\right\rangle-\langle x\rangle^{2}=\frac{\hbar}{2 m \omega}\left[1+\left(\alpha+\alpha^{*}\right)^{2}-\left(\alpha+\alpha^{*}\right)^{2}\right]=\frac{\hbar}{2 m \omega} .

\sigma_{p}^{2}=\left\langle p^{2}\right\rangle-\langle p\rangle^{2}=\frac{\hbar m \omega}{2}\left[1-\left(\alpha-\alpha^{*}\right)^{2}+\left(\alpha-\alpha^{*}\right)^{2}\right]=\frac{\hbar m \omega}{2} . \quad \sigma_{x} \sigma_{p}=\sqrt{\frac{\hbar}{2 m \omega}} \sqrt{\frac{\hbar m \omega}{2}}=\frac{\hbar}{2} .    QED

(c) Using Eq. 2.68 for \psi_{n} :

\psi_{n}=\frac{1}{\sqrt{n !}}\left(\hat{a}_{+}\right)^{n} \psi_{0} (2.68).

c_{n}=\left\langle\psi_{n} \mid \alpha\right\rangle=\frac{1}{\sqrt{n !}}\left\langle\left(a_{+}\right)^{n} \psi_{0} \mid \alpha\right\rangle=\frac{1}{\sqrt{n !}}\left\langle\psi_{0} \mid\left(a_{-}\right)^{n} \alpha\right\rangle=\frac{1}{\sqrt{n !}} \alpha^{n}\left\langle\psi_{0} \mid \alpha\right\rangle=\frac{\alpha^{n}}{\sqrt{n !}} c_{0} .

(d) 1=\sum_{n=0}^{\infty}\left|c_{n}\right|^{2}=\left|c_{0}\right|^{2} \sum_{n=0}^{\infty} \frac{|\alpha|^{2 n}}{n !}=\left|c_{0}\right|^{2} e^{|\alpha|^{2}} \quad \Rightarrow     c_{0}=e^{-|\alpha|^{2} / 2} .

(e) |\alpha(t)\rangle=\sum_{n=0}^{\infty} c_{n} e^{-i E_{n} t / \hbar}|n\rangle=\sum_{n=0}^{\infty} \frac{\alpha^{n}}{\sqrt{n !}} e^{-|\alpha|^{2} / 2} e^{-i\left(n+\frac{1}{2}\right) \omega t}|n\rangle=e^{-i \omega t / 2} \sum_{n=0}^{\infty} \frac{\left(\alpha e^{-i \omega t}\right)^{n}}{\sqrt{n !}} e^{-|\alpha|^{2} / 2}|n\rangle .

Apart from the overall phase factor e^{-i \omega t / 2} (which doesn’t affect its status as an eigenfunction of a_- , or its eigenvalue), |\alpha(t)\rangle \text { is the same as }|\alpha\rangle \text {, but with eigenvalue } \alpha(t)=e^{-i \omega t} \alpha .

(f) From (a), \langle x\rangle=\sqrt{\hbar / 2 m \omega}\left[\alpha(t)+\alpha^{*}(t)\right] . \text { From (e), } \alpha(t)=e^{-i \omega t} \alpha .   So

\langle x\rangle=\sqrt{\frac{\hbar}{2 m \omega}}\left(\alpha e^{-i \omega t}+\alpha^{*} e^{i \omega t}\right)=\sqrt{\frac{\hbar}{2 m \omega}}\left(C \sqrt{\frac{m \omega}{2 \hbar}} e^{i \phi} e^{-i \omega t}+C \sqrt{\frac{m \omega}{2 \hbar}} e^{-i \phi} e^{i \omega t}\right) .

=\frac{1}{2} C\left(e^{-i(\omega t-\phi}+e^{i(\omega t-\phi)}\right)=C \cos (\omega t-\phi).

From (b), \sigma_{x}=\sqrt{\frac{\hbar}{2 m \omega}} . So the expectation value of x oscillates at the classical frequency (but this is true for all states of the harmonic oscillator-see Problem 3.40) and the wave packet maintains a constant width.

(g) Equation 2.59 says a_{-}\left|\psi_{0}\right\rangle=0 , so yes, it is a coherent state, with eigenvalue α = 0.

\hat{a}_{-} \psi_{0}=0       (2.59).

Related Answered Questions