Question 13.156: Collars A and B, of the same mass m, are moving toward each ...

Collars A and B, of the same mass m, are moving toward each other with identical speeds as shown. Knowing that the coefficient of restitution between the collars is e, determine the energy lost in the impact as a function of m, e and ν.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Impulse-momentum principle (collars A and B):

\Sigma m \mathbf{v}_{1}+\Sigma \mathbf{Imp}_{1 \rightarrow 2}=\Sigma m \mathbf{v}_{2}

Horizontal components \overset{+}{→}: m_{A} \nu_{A}+m_{B} \nu_{B}=m_{A} \nu_{A}^{\prime}+m_{B} \nu_{B}^{\prime}

Using data, \quad m \nu+m(-ν)=m \nu_{A}^{\prime}+m \nu_{B}^{\prime}

or \quad\nu_{A}^{\prime}+\nu_{B}^{\prime}=0     (1) 

Apply coefficient of restitution.

\begin{aligned}& \nu_{B}^{\prime}-\nu_{A}^{\prime}=e\left(\nu_{A}-\nu_{B}\right) \\& \nu_{B}^{\prime}-\nu_{A}^{\prime}=e[\nu-(-\nu)] \\& \nu_{B}^{\prime}-\nu_{A}^{\prime}=2 e \nu & \text{(2)}\end{aligned}

Subtracting Eq. (1) from Eq. (2), 

\begin{aligned}-2 \nu_{A} & =2 e \nu \\\nu_{A} & =-e \nu && \mathbf{v}_{A}=e \nu\longleftarrow\end{aligned}

Adding Eqs. (1) and (2),

\begin{aligned}2 \nu_{B} & =2 e \nu \\\nu_{B} & =e \nu && \mathbf{v}_B=e\nu\longrightarrow \end{aligned}

Kinetic energies:

T_{1}=\frac{1}{2} m_{A} \nu_{A}^{2}+\frac{1}{2} m_{B} \nu_{B}^{2}=\frac{1}{2} m \nu^{2}+\frac{1}{2} m(-\nu)^{2}=m \nu^{2}

T_{2}=\frac{1}{2} m_{A}\left(\nu_{A}^{\prime}\right)^{2}+\frac{1}{2} m_{B}\left(\nu_{B}^{\prime}\right)^{2}=\frac{1}{2} m(e \nu)^{2}+\frac{1}{2} m(e \nu)^{2}=e^{2} m \nu^{2}

Energy loss: \quad\quad\quad\quad\quad\quad T_{1}-T_{2}=\left(1-e^{2}\right) m \nu^{2}\blacktriangleleft

13.156.

Related Answered Questions