Question 8.6: COLLISION IN HORIZONTAL PLANE Figure 8.14a shows two battlin...

COLLISION IN HORIZONTAL PLANE

Figure 8.14a shows two battling robots on a frictionless surface. Robot A, with mass 20 kg, initially moves at 2.0 m/s parallel to the x-axis. It collides with robot B, which has mass 12 kg and is initially at rest. After the collision, robot A moves at 1.0 m/s in a direction that makes an angle α = 30° with its initial direction (Fig. 8.14b). What is the final velocity of robot B?

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

IDENTIFY and SET UP:

There are no horizontal external forces, so the x- and y-components of the total momentum of the system are conserved. Hence the sum of the x-components of momentum before the collision (subscript 1) must equal the sum after the collision (subscript 2), and similarly for the sums of the y-components. Our target variable is \overrightarrow{\boldsymbol{v}}_{B 2}, the final velocity of robot B.

EXECUTE:

The momentum-conservation equations and their solutions for v_{B 2 x} \text { and } v_{B 2 y} are

m_{A} v_{A 1 x}+m_{B} v_{B 1 x}=m_{A} v_{A 2 x}+m_{B} v_{B 2 x}

 

v_{B 2 x}=\frac{m_{A} v_{A 1 x}+m_{B} v_{B 1 x}-m_{A} v_{A 2 x}}{m_{B}}

 

=\frac{\left[\begin{array}{c}(20 \mathrm{~kg})(2.0 \mathrm{~m} / \mathrm{s})+(12 \mathrm{~kg})(0) \\-(20 \mathrm{~kg})(1.0 \mathrm{~m} / \mathrm{s})\left(\cos 30^{\circ}\right)\end{array}\right]}{12\mathrm{~kg}} = 1.89 m/s

 

m_{A} v_{A 1 y}+m_{B} v_{B 1 y}=m_{A} v_{A 2 y}+m_{B} v_{B 2 y}

 

v_{B 2 y}=\frac{m_{A} v_{A 1 y}+m_{B} v_{B 1 y}-m_{A} v_{A 2 y}}{m_{B}}

 

=\frac{\left[\begin{array}{l}(20 \mathrm{~kg})(0)+(12 \mathrm{~kg})(0) \\-(20 \mathrm{~kg})(1.0\mathrm{~m} / \mathrm{s})\left(\sin 30^{\circ}\right)\end{array}\right]}{12 \mathrm{~kg}} = -0.83 m/s

 

Figure 8.14b shows the motion of robot B after the collision. The magnitude of \overrightarrow{\boldsymbol{v}}_{B 2} is

v_{B 2}=\sqrt{(1.89 \mathrm{~m} / \mathrm{s})^{2}+(-0.83 \mathrm{~m} / \mathrm{s})^{2}}=2.1 \mathrm{~m} / \mathrm{s}

and the angle of its direction from the positive x-axis is

\beta=\arctan \frac{-0.83 \mathrm{~m} / \mathrm{s}}{1.89 \mathrm{~m} / \mathrm{s}}=-24^{\circ}

 

EVALUATE: Let’s confirm that the components of total momentum before and after the collision are equal. Initially robot A has x-momentum m_{A} v_{A 1 x}=(20 \mathrm{~kg})(2.0 \mathrm{~m} / \mathrm{s})=40 \mathrm{~kg} \cdot \mathrm{m} / \mathrm{s} and zero y-momentum; robot B has zero momentum. Afterward, the momentum components are m_{A} v_{A 2 x}=(20 \mathrm{~kg})(1.0 \mathrm{~m} / \mathrm{s})\left(\cos 30^{\circ}\right)= 17 kg . m/s and m_{B} v_{B 2 x}=(12 \mathrm{~kg})(1.89 \mathrm{~m} / \mathrm{s})=23 \mathrm{~kg} \cdot \mathrm{m} / \mathrm{s}; the total x-momentum is 40 kg . m/s, the same as before the collision.
The final y-components are m_{A} v_{A 2 y}=(20 \mathrm{~kg})(1.0 \mathrm{~m} / \mathrm{s})\left(\sin 30^{\circ}\right)= 10 kg . m/s and m_{B} v_{B 2 y}=(12 \mathrm{~kg})(-0.83 \mathrm{~m} / \mathrm{s})=-10 \mathrm{~kg} \cdot \mathrm{m} / \mathrm{s}; the total y-component of momentum is zero, as before the collision.

 

Related Answered Questions