Question : Computation of ω, Sω and Iω for a double L-shaped section.

Computation of w , S_{w} and I_{w} for a double L-shaped section.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Let us consider the thin-walled section shown in the next page:

Distribution of w_{s}\left ( s \right )

DA segment: 0\leq s\leq b          ; -b\leq y\leq 0              ; z=-\frac{h}{2}

d_{s}=d_{y}                 , c_{n}=-\frac{h}{2}                   , w_{s}\left ( s \right )=\int_{0}^{s}c_{n}d_{s}=-\frac{h}{2}s

AB segment: b\leq s\leq b+h              ; y=0                ; -\frac{h}{2}\leq z\leq \frac{h}{2}

d_{s}= d_{z} , c_{n}=0                , w_{s}\left ( s=b \right )=-\frac{h}{2}b

BF segment: b+h\leq s\leq b+2h                 ; 0\leq y\leq b                 ; z=\frac{h}{2}

d_{s}=d_{y}            , c_{n}=\frac{h}{2}          , w_{s}\left ( s \right )=-\frac{h}{2}b+\int_{b+h}^{s}\frac{h}{2}d_{s}=-\frac{h}{2}b+\frac{h}{2}\left ( s-b-h \right )

Mean value:      w_{m}=-w_{D}

w_{m}=\frac{1}{2b+h}\int_{0}^{2b+h} w_{s}d_{s}=-\frac{bh\left ( b+h \right )}{2L_{s}}

 

Sectorial area   w and S_{w}

w\left ( s,\zeta \right )=g\left ( s \right )-c_{t}\left ( s \right )\zeta         with      g\left ( s \right ) w_{s}+w_{D}

Neglecting the thickness variation, w\left ( s \right )=g\left ( s \right )        and S_{w}\left ( s,0 \right )=\int_{0}^{s}g\left ( s \right )ds.

Sectorial inertia modulus: I_{w}=\int_{A}^{}w^{2}dA=\frac{th^{2}b^{3}}{12}\left ( \frac{b+2h}{2b+h} \right )

The contribution of the term -c_{t}\zeta of w\left ( s,\zeta \right ) in I_{w} is negligible. Its value is I_{w}=\frac{t^{3}}{12}\left ( \frac{2b^{3}}{3}+\frac{h^{3}}{12} \right ).

The figures below shows the distribution of w_{s}\left ( s \right ) , g\left ( s \right ) and S_{w}\left ( s \right ) in the double L-shaped section considered.

 

Computation of ω, Sω and Iω for a double L-shaped section.
4,4,4,4
Computation of ω, Sω and Iω for a double L-shaped section