Question 17.6: Compute Qu and Qa for the pier given in Ex. 17.5 by the foll...

Compute Q_{u} \text { and } Q_{a} for the pier given in Ex. 17.5 by the following methods.

1 . Use the SPT value [Eq. ( 1 5 .48) j for bored piles

Q_{u}=133 N_{c o r} A_{b}+0.67 \vec{N}_{c o r} A_{s} (15.48)

2. Use the Tomlinson method of estimating Q_{b} and Table 15.2 for estimating Q_{f}. Compare the results of the various methods.

 

Table 15.2 Values of \overline{ K }_{s} \text { and } \delta(Broms, 1966)
Values of \bar{K}_{s}
Pile material \delta Low D_{r} High D_{r}
Steel 20° 0.5 1
Concrete 3 / 4 \phi 1 2
Wood 2 / 3 \phi 1.5 4
The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Use of the SPT value [Mey erhof Eq. (15.48)]

 

\begin{aligned}&q_{b}=133 N_{c o r}=133 \times 30=3,990 kN / m ^{2} \\&Q_{b}=\frac{3.14 \times(1.5)^{2}}{4} \times 3,990=7,047 kN \\&f_{s}=0.67 N_{c o r}=0.67 \times 30=20 kN / m ^{2} \\&Q_{f}=3.14 \times 1.5 \times 25 \times 20=2,355 kN \\&Q_{u}=7,047+2,355=9,402 kN \\&Q_{a}=\frac{9,402}{2.5}=3,760 kN\end{aligned}

 

Tomlinson Method for Q_{b}

 

For a driven pile

 

From Fig. 15.9 N_{q}=65 \text { for } \phi=36^{\circ} \text { and } \frac{L}{d}=\frac{25}{1.5} \approx 17

 

Hence q_{b}=q_{o}^{\prime} N_{q}=437.5 \times 65=28,438 kN / m ^{2}

 

For bored pile

 

q_{b}=\frac{1}{3} q_{b} \text { (driven pile) }=\frac{1}{3} \times 28,438=9,479 kN / m ^{2}

 

Q_{b}=A_{b} q_{b}=1.766 \times 9,479=16.740 kN

 

Q_{f} from Table 15.2

 

For \phi=36^{\circ}, \delta=0.75 \times 36=27, \text { and } \bar{K}_{s}=1.5 (for medium dense sand).

 

f_{s}=\bar{q}_{o}^{\prime} \bar{K}_{s} \tan \delta=\frac{437.5}{2} \times 1.5 \tan 27^{\circ}=167 kN / m ^{2}

 

As per Tomlinson (1986) f_{s} is limited to 110 kN / m ^{2} \text {. Use } f_{s}=110 kN / m ^{2}.

 

Therefore Q_{f}=3.14 \times 1.5 \times 25 \times 110=12,953 kN

 

Q_{u}=Q_{b}+Q_{f}=16,740+12,953=29,693 kN

 

Q_{a}=\frac{29,693}{2.5}=11,877 kN

 

Comparison of estimated results \left(F_{s}=2.5\right)
Example No Name of method Q_{b}( kN ) Q_{f}( kN ) Q_{u}( kN ) Q_{a}( kN )
17.5 Vesic 19.429 12.953 32.382 12.953
17.5 O’Neill and Reese, for Q_{b} and Vesic for Q_{f} 3.046 12.953 15.999 6.4
17.6 MeyerhofEq. (15.49) 7.047 2.355 9.402 3.76
17.6 Tomlinson for Q_{b} (Fig. 15.9) Table 15.2 for Q_{f} 16.74 12.953 29.693 11.877

 

Which method to use

The variation in the values of Q_{b} \text { and } Q_{f}, are very large between the methods. Since the soils encountered in the field are generally heterogeneous in character no theory holds well for all the soil conditions. Designers have to be practical and pragmatic in the selection of any one or combination of the theoretical approaches discussed earlier.

17.6

Related Answered Questions