Compute the determinant of the matrix
A=\begin{bmatrix}2& -2 &7 \\ 0 & -3 &5 \\ 0&0&4 \end{bmatrix}
In addition, determine if A is invertible.
Compute the determinant of the matrix
A=\begin{bmatrix}2& -2 &7 \\ 0 & -3 &5 \\ 0&0&4 \end{bmatrix}
In addition, determine if A is invertible.
Again using the definition, we see that
det A=2det \begin{bmatrix} -5 & 3 \\ 0 & 4\end{bmatrix} −(−2) det \begin{bmatrix} 0 & 3 \\ 0 & 4\end{bmatrix} +7det \begin{bmatrix} 0 & -5 \\ 0 & 0\end{bmatrix}
= 2(−5 · 4−2 · 0)+2(0−0)+7(0−0)
= 2(−5)(4)=−40
Note particularly that the determinant of A is the product of its diagonal entries.Moreover, A clearly has a pivot position in every row, and so by this fact (or equivalently by the nonzero determinant of A) we see that A is invertible.