Compute the Laplace transform of f (t ) = t .
Compute the Laplace transform of f (t ) = t .
By definition,
L[t]=\int_{0}^{∞}{te^{−st} dt } (5.2.6)
Replacing the improper integral with a limit and integrating by parts, we observe that
L[t]=\underset{r\rightarrow \infty }{\lim } \int_{0}^{r}{te^{−st} dt }
=\underset{r\rightarrow \infty }{\lim }[−\frac {1}{s}(t + \frac {1}{s})e^{−st}\overset{r}{\underset{0}{\mid }}]
=\underset{r\rightarrow \infty }{\lim }[−\frac {1}{s}(r + \frac {1}{s})e^{−sr} + \frac {1}{s}(0+ \frac {1}{s})e^{0}]
=\underset{r\rightarrow \infty }{\lim }[−\frac {r}{s}e^{−sr} − \frac {1}{s^{2}} e^{−sr} + \frac {1}{s^{2}}] (5.2.7)
By L’Hopital’s Rule,^{1} we know that re^{−sr} → 0 as r →∞ for each s > 0. Combined with the fact that e^{−sr} →0 as r→∞, it follows from (5.2.7) that
L[t] = F(s) = \frac {1}{s^{2}} (5.2.8)
1: \underset{r\rightarrow \infty }{\lim }\frac {r}{e^{sr}}=\underset{r\rightarrow \infty }{\lim }\frac {1}{se^{sr}}= 0.