Compute the loss of head and pressure drop in 200 ft of horizontal 6-in-diameter asphalted cast iron pipe carrying water with a mean velocity of 6 ft/s.
Compute the loss of head and pressure drop in 200 ft of horizontal 6-in-diameter asphalted cast iron pipe carrying water with a mean velocity of 6 ft/s.
• System sketch: See Fig. 6.7 for a horizontal pipe, with \Delta z = 0 and h_f proportional to \Delta p.
• Assumptions: Turbulent flow, asphalted horizontal cast iron pipe, d = 0.5 ft, L = 200 ft.
• Approach: Find Re_d and \epsilon /d; enter the Moody chart, Fig. 6.13; find f, then h_f and \Delta p.
• Property values: From Table A.3 for water, converting to BG units, \rho = 998/515.38 = 1.94 slug/ft^3, \mu = 0.001/47.88 = 2.09E-5 slug/(ft-s).
Table A.3 Properties of Common Liquids at 1 atm and 20°C (68°F) | ||||||
Liquid | \rho, kg/m^3 | µ, kg/(m·s) | Y, N/m^* | p_{\nu}, N/m^2 | Bulk modulus K, N/m^2 | Viscosity parameter C^{\dagger} |
Ammonia | 608 | 2.20 E-4 | 2.13 E-2 | 9.10 E+5 | 1.82 E+9 | 1.05 |
Benzene | 881 | 6.51 E-4 | 2.88 E-2 | 1.01 E+4 | 1.47 E+9 | 4.34 |
Carbon tetrachloride | 1590 | 9.67 E-4 | 2.70 E-2 | 1.20 E+4 | 1.32 E+9 | 4.45 |
Ethanol | 789 | 1.20 E-3 | 2.28 E-2 | 5.73 E+3 | 1.09 E+9 | 5.72 |
Ethylene glycol | 1117 | 2.14 E-2 | 4.84 E-2 | 1.23 E+1 | 3.05 E+9 | 11.7 |
Freon 12 | 1327 | 2.62 E-4 | – | – | 7.95 E+8 | 1.76 |
Gasoline | 680 | 2.92 E-4 | 2.16 E-2 | 5.51 E+4 | 1.3 E+9 | 3.68 |
Glycerin | 1260 | 1.49 | 6.33 E-2 | 1.43 E-2 | 4.35 E+9 | 28.0 |
Kerosene | 804 | 1.92 E-3 | 2.8 E-2 | 3.11 E+3 | 1.41 E+9 | 5.56 |
Mercury | 13,550 | 1.56 E-3 | 4.84 E-1 | 1.13 E-3 | 2.85 E+10 | 1.07 |
Methanol | 791 | 5.98 E-4 | 2.25 E-2 | 1.34 E+4 | 1.03 E+9 | 4.63 |
SAE 10W oil | 870 | 1.04 E-1^{\ddagger} | 3.6 E-2 | – | 1.31 E+9 | 15.7 |
SAE 10W30 oil | 876 | 1.7 E-1^{\ddagger} | – | – | – | 14.0 |
SAE 30W oil | 891 | 2.9 E-1^{\ddagger} | 3.5 E-2 | – | 1.38 E+9 | 18.3 |
SAE 50W oil | 902 | 8.6 E-^{\ddagger} | – | – | – | 20.2 |
Water | 998 | 1.00 E-3 | 7.28 E-2 | 2.34 E+3 | 2.19 E+9 | Table A.1 |
Seawater (30%) | 1025 | 1.07 E-3 | 7.28 E-2 | 2.34 E+3 | 2.33 E+9 | 7.28 |
^*In contact with air.
^{\dagger}The viscosity–temperature variation of these liquids may be fitted to the empirical expression
with accuracy of ±6 percent in the range 0 ≤ T ≤ 100°C.
^{\ddagger}Representative values. The SAE oil classifications allow a viscosity variation of up to ±50 percent, especially at lower temperatures.
Table A.1 | Viscosity and Density of Water at 1 atm | ||||||
T,°C | \rho, kg/m^3 | µ, N·s/m^2 | \nu, m^2/s | T,°F | \rho, slug/ft^3 | \mu, Ib\cdot s/ft^2 | \nu, ft^2/s |
0 | 1000 | 1.788 E-3 | 1.788 E-6 | 32 | 1.94 | 3.73 E-5 | 1.925 E-5 |
10 | 1000 | 1.307 E-3 | 1.307 E-6 | 50 | 1.94 | 2.73 E-5 | 1.407 E-5 |
20 | 998 | 1.003 E-3 | 1.005 E-6 | 68 | 1.937 | 2.09 E-5 | 1.082 E-5 |
30 | 996 | 0.799 E-3 | 0.802 E-6 | 86 | 1.932 | 1.67 E-5 | 0.864 E-5 |
40 | 992 | 0.657 E-3 | 0.662 E-6 | 104 | 1.925 | 1.37 E-5 | 0.713 E-5 |
50 | 988 | 0.548 E-3 | 0.555 E-6 | 122 | 1.917 | 1.14 E-5 | 0.597 E-5 |
60 | 983 | 0.467 E-3 | 0.475 E-6 | 140 | 1.908 | 0.975 E-5 | 0.511 E-5 |
70 | 978 | 0.405 E-3 | 0.414 E-6 | 158 | 1.897 | 0.846 E-5 | 0.446 E-5 |
80 | 972 | 0.355 E-3 | 0.365 E-6 | 176 | 1.886 | 0.741 E-5 | 0.393 E-5 |
90 | 965 | 0.316 E-3 | 0.327 E-6 | 194 | 1.873 | 0.660 E-5 | 0.352 E-5 |
100 | 958 | 0.283 E-3 | 0.295 E-6 | 212 | 1.859 | 0.591 E-5 | 0.318 E-5 |
Suggested curve fits for water in the range 0 ≤ T ≤ 100°C: | |||||||
\rho(kg/m^3)\approx 1000-0.0178 |T^{\circ}C-4^{\circ}C|^{1.7} \pm 0.2\% | |||||||
\ln \frac{\mu}{\mu_0}\approx 1.704-5.306_z+{7.003_z}^2 | |||||||
z=\frac{273 K}{T K} \mu_0=1.788E-3 kg/(m\cdot s) |
• Solution step 1: Calculate Re_d and the roughness ratio. As a crutch, Moody provided water and air values of “Vd” at the top of Fig. 6.13 to find Re_d. No, let’s calculate it ourselves:
Re_d=\frac{\rho Vd}{\mu}=\frac{(1.94 slug/ft^3)(6 ft/s)(0.5 ft)}{2.09E-5 slug/(ft \cdot s)} \approx 279,000 (turbulent)
From Table 6.1, for asphalted cast iron, \epsilon = 0.0004 ft. Then calculate
\epsilon /d = (0.0004 ft)/(0.5 ft) = 0.0008
ε | ||||
Material | Condition | ft | mm | Uncertainty, % |
Steel | Sheet metal, new | 0.0002 | 0.05 | ±60 |
Stainless, new | 7E-06 | 0.002 | ±50 | |
Commercial, new | 0.0002 | 0.046 | ±30 | |
Riveted | 0.01 | 3 | ±70 | |
Rusted | 0.007 | 2 | ±50 | |
Iron | Cast, new | 0.0009 | 0.26 | ±50 |
Wrought, new | 0.0002 | 0.046 | ±20 | |
Galvanized, new | 0.0005 | 0.15 | ±40 | |
Asphalted cast | 0.0004 | 0.12 | ±50 | |
Brass | Drawn, new | 7E-06 | 0.002 | ±50 |
Plastic | Drawn tubing | 5E-06 | 0.0015 | ±60 |
Glass | – | Smooth | Smooth | |
Concrete | Smoothed | 0.0001 | 0.04 | ±60 |
Rough | 0.007 | 2 | ±50 | |
Rubber | Smoothed | 3E-05 | 0.01 | ±60 |
Wood | Stave | 0.0016 | 0.5 | ±40 |
• Solution step 2: Find the friction factor from the Moody chart or from Eq. (6.48). If you use the Moody chart, Fig. 6.13, you need practice. Find the line on the right side for \epsilon /d = 0.0008 and follow it back to the left until it hits the vertical line for Re_d \approx 2.79E5. Read, approximately, f \approx 0.02 [or compute f = 0.0198 from Eq. (6.48), perhaps using EES].
\frac{1}{f^{1/2}}=-2.0\log \left(\frac{\epsilon /d}{3.7}+\frac{2.51}{Re_d f^{1/2}}\right) (6.48)
• Solution step 3: Calculate h_f from Eq. (6.10) and \Delta p from Eq. (6.8) for a horizontal pipe:
h_f=(z_1-z_2)+\left(\frac{p_1}{\rho g}-\frac{p_2}{\rho g}\right)=\Delta z+\frac{\Delta p}{\rho g} (6.8)
h_f = f\frac{L}{d}\frac{V^2}{2g} = (0.02)\left(\frac{200 ft}{0.5 ft}\right)\frac{(6 ft/s)^2}{2(32.2 ft/s^2)} \approx 4.5 ft
\Delta p =\rho g h_f = (1.94 slug/ft^3)(32.2 ft/s^2)(4.5 ft) \approx 280 lbf/ft^2
• Comments: In giving this example, Moody [8] stated that this estimate, even for clean new pipe, can be considered accurate only to about \pm10 percent.