Question 6.6: Compute the loss of head and pressure drop in 200 ft of hori...

Compute the loss of head and pressure drop in 200 ft of horizontal 6-in-diameter asphalted cast iron pipe carrying water with a mean velocity of 6 ft/s.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

• System sketch: See Fig. 6.7 for a horizontal pipe, with \Delta z = 0 and h_f proportional to \Delta p.
• Assumptions: Turbulent flow, asphalted horizontal cast iron pipe, d = 0.5 ft, L = 200 ft.
• Approach: Find Re_d and \epsilon /d; enter the Moody chart, Fig. 6.13; find f, then h_f and \Delta p.
• Property values: From Table A.3 for water, converting to BG units, \rho = 998/515.38 = 1.94 slug/ft^3, \mu = 0.001/47.88 = 2.09E-5 slug/(ft-s).

Table A.3 Properties of Common Liquids at 1 atm and 20°C (68°F)
Liquid \rho,  kg/m^3 µ, kg/(m·s) Y, N/m^* p_{\nu},  N/m^2 Bulk modulus K, N/m^2 Viscosity
parameter C^{\dagger}
Ammonia 608 2.20 E-4 2.13 E-2 9.10 E+5 1.82 E+9 1.05
Benzene 881 6.51 E-4 2.88 E-2 1.01 E+4 1.47 E+9 4.34
Carbon tetrachloride 1590 9.67 E-4 2.70 E-2 1.20 E+4 1.32 E+9 4.45
Ethanol 789 1.20 E-3 2.28 E-2 5.73 E+3 1.09 E+9 5.72
Ethylene glycol 1117 2.14 E-2 4.84 E-2 1.23 E+1 3.05 E+9 11.7
Freon 12 1327 2.62 E-4 7.95 E+8 1.76
Gasoline 680 2.92 E-4 2.16 E-2 5.51 E+4 1.3 E+9 3.68
Glycerin 1260 1.49 6.33 E-2 1.43 E-2 4.35 E+9 28.0
Kerosene 804 1.92 E-3 2.8 E-2 3.11 E+3 1.41 E+9 5.56
Mercury 13,550 1.56 E-3 4.84 E-1 1.13 E-3 2.85 E+10 1.07
Methanol 791 5.98 E-4 2.25 E-2 1.34 E+4 1.03 E+9 4.63
SAE 10W oil 870 1.04 E-1^{\ddagger} 3.6 E-2 1.31 E+9 15.7
SAE 10W30 oil 876 1.7 E-1^{\ddagger} 14.0
SAE 30W oil 891 2.9 E-1^{\ddagger} 3.5 E-2 1.38 E+9 18.3
SAE 50W oil 902 8.6 E-^{\ddagger} 20.2
Water 998 1.00 E-3 7.28 E-2 2.34 E+3 2.19 E+9 Table A.1
Seawater (30%) 1025 1.07 E-3 7.28 E-2 2.34 E+3 2.33 E+9 7.28

^*In contact with air.
^{\dagger}The viscosity–temperature variation of these liquids may be fitted to the empirical expression

\frac{\mu}{\mu_{20^{\circ}C}} \approx \exp \left[C\left(\frac{293  K}{T  K} -1\right)\right]

with accuracy of ±6 percent in the range 0 ≤ T ≤ 100°C.
^{\ddagger}Representative values. The SAE oil classifications allow a viscosity variation of up to ±50 percent, especially at lower temperatures.

Table A.1 Viscosity and Density of Water at 1 atm
T,°C \rho,  kg/m^3 µ, N·s/m^2 \nu,  m^2/s T,°F \rho,  slug/ft^3 \mu,  Ib\cdot s/ft^2 \nu,  ft^2/s
0 1000 1.788 E-3 1.788 E-6 32 1.94 3.73 E-5 1.925 E-5
10 1000 1.307 E-3 1.307 E-6 50 1.94 2.73 E-5 1.407 E-5
20 998 1.003 E-3 1.005 E-6 68 1.937 2.09 E-5 1.082 E-5
30 996 0.799 E-3 0.802 E-6 86 1.932 1.67 E-5 0.864 E-5
40 992 0.657 E-3 0.662 E-6 104 1.925 1.37 E-5 0.713 E-5
50 988 0.548 E-3 0.555 E-6 122 1.917 1.14 E-5 0.597 E-5
60 983 0.467 E-3 0.475 E-6 140 1.908 0.975 E-5 0.511 E-5
70 978 0.405 E-3 0.414 E-6 158 1.897 0.846 E-5 0.446 E-5
80 972 0.355 E-3 0.365 E-6 176 1.886 0.741 E-5 0.393 E-5
90 965 0.316 E-3 0.327 E-6 194 1.873 0.660 E-5 0.352 E-5
100 958 0.283 E-3 0.295 E-6 212 1.859 0.591 E-5 0.318 E-5
Suggested curve fits for water in the range 0 ≤ T ≤ 100°C:
\rho(kg/m^3)\approx 1000-0.0178 |T^{\circ}C-4^{\circ}C|^{1.7} \pm 0.2\%
\ln \frac{\mu}{\mu_0}\approx 1.704-5.306_z+{7.003_z}^2
z=\frac{273  K}{T  K}               \mu_0=1.788E-3  kg/(m\cdot s)

• Solution step 1: Calculate Re_d and the roughness ratio. As a crutch, Moody provided water and air values of “Vd” at the top of Fig. 6.13 to find Re_d. No, let’s calculate it ourselves:
Re_d=\frac{\rho Vd}{\mu}=\frac{(1.94  slug/ft^3)(6  ft/s)(0.5  ft)}{2.09E-5  slug/(ft \cdot s)} \approx 279,000 (turbulent)
From Table 6.1, for asphalted cast iron, \epsilon = 0.0004 ft. Then calculate

\epsilon /d = (0.0004 ft)/(0.5 ft) = 0.0008

ε
Material Condition ft mm Uncertainty, %
Steel Sheet metal, new 0.0002 0.05 ±60
Stainless, new 7E-06 0.002 ±50
Commercial, new 0.0002 0.046 ±30
Riveted 0.01 3 ±70
Rusted 0.007 2 ±50
Iron Cast, new 0.0009 0.26 ±50
Wrought, new 0.0002 0.046 ±20
Galvanized, new 0.0005 0.15 ±40
Asphalted cast 0.0004 0.12 ±50
Brass Drawn, new 7E-06 0.002 ±50
Plastic Drawn tubing 5E-06 0.0015 ±60
Glass Smooth Smooth
Concrete Smoothed 0.0001 0.04 ±60
Rough 0.007 2 ±50
Rubber Smoothed 3E-05 0.01 ±60
Wood Stave 0.0016 0.5 ±40

• Solution step 2: Find the friction factor from the Moody chart or from Eq. (6.48). If you use the Moody chart, Fig. 6.13, you need practice. Find the line on the right side for \epsilon /d = 0.0008 and follow it back to the left until it hits the vertical line for Re_d \approx 2.79E5. Read, approximately, f \approx 0.02 [or compute f = 0.0198 from Eq. (6.48), perhaps using EES].
\frac{1}{f^{1/2}}=-2.0\log \left(\frac{\epsilon /d}{3.7}+\frac{2.51}{Re_d f^{1/2}}\right)                                     (6.48)
• Solution step 3: Calculate h_f from Eq. (6.10) and \Delta p from Eq. (6.8) for a horizontal pipe:
h_f=(z_1-z_2)+\left(\frac{p_1}{\rho g}-\frac{p_2}{\rho g}\right)=\Delta z+\frac{\Delta p}{\rho g} (6.8)
h_f = f\frac{L}{d}\frac{V^2}{2g} = (0.02)\left(\frac{200  ft}{0.5  ft}\right)\frac{(6  ft/s)^2}{2(32.2  ft/s^2)} \approx 4.5   ft
\Delta p =\rho g h_f = (1.94  slug/ft^3)(32.2  ft/s^2)(4.5   ft) \approx 280  lbf/ft^2
• Comments: In giving this example, Moody [8] stated that this estimate, even for clean new pipe, can be considered accurate only to about \pm10 percent.

capture-20220213-213405
capture-20220213-213307

Related Answered Questions