Question : Compute the stiffness matrix and the self-weight equivalent ...

Compute the stiffness matrix and the self-weight equivalent nodal modal force amplitude vector for a 3-noded triangular straight prism.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The faces of the prism are linear triangles (Figure 11.21). The shape functions are

N_{i}=\frac{1}{2A^{(e)}}[a_{i}+b_{i}x+c_{i}z]

where a_{i}, b_{i} and c_{i} are given by Eq.(4.32b) of [On4] with x, z for x, y. The element strain matrix is

B_{i}^{l}=\frac{1}{2A^{(e)}}\begin{bmatrix}b_{i} &0 &0 \\ 0 &-\gamma N_{i} &0 \\ 0 & 0 &c_{i} \\ \gamma N_{i} &b_{i} &0 \\ c_{i} &0 &b_{i} \\ 0&c_{i} &\gamma N_{i} \end{bmatrix}con\gamma =\frac{l\pi }{b}

The product B_{i}^{l^{T}}DB_{j}^{l} contains terms such as N_{i} and N_{i}N_{j}. Analytical integration leads to

[K_{ij}^{ll}]^{(e)}=\frac{b}{8A^{(e)}}\times \begin{bmatrix}(d_{11}b_{i}b_{j}+d_{55}c_{i}c_{j}+\frac{\gamma A^{(e)}}{3}(-d_{12}b_{i}+d_{44}b_{j})(d_{13}b_{i}c_{j}+d_{55}c_{i}b_{j})+d_{44}\alpha _{ij})\\ \frac{\gamma A^{(e)}}{3}(-d_{21}b_{j}+c_{44}b_{i})(d_{44}b_{i}b_{j}+d_{66}c_{i}c_{j}+\frac{\gamma A^{(e)}}{3}(d_{66}c_{i}-d_{23}c_{j})+d_{22}\alpha _{ij})\\ (d_{31}c_{i}b_{j}+d_{55}b_{i}c_{j}) \frac{\gamma A^{(e)}}{3}(d_{66}c_{j}-d_{32}c_{i})(d_{33}c_{i}c_{j}+d_{55}b_{i}b_{j}+d_{66}\alpha _{ij})\end{bmatrix}

 

with \alpha _{ij}=\frac{\gamma ^{2}A^{(e)}}{6}      if      i = j          or        \frac{\gamma ^{2}A^{(e)}}{12}       if        i\neq j

The equivalent nodal modal force amplitude vector for self-weight is obtained from Eqs.(11.87)–(11.90). For \rho =constant, g_{x}=g_{y}=0 and g_{z}=-g ,

f_{i}^{l}=\frac{b}{2}b^{l}\iint_{A^{(e)}}^{}N_{i}^{T}dA=\frac{bA^{(e)}}{6}b^{l}=\frac{b\rho g}{3l\pi }[1-(-1)^{l}]\begin{Bmatrix}0\\ 0\\ -1\end{Bmatrix}

// (Eq.(4.32b)):\hat{\sigma }{}'=\iint_{A}^{}\begin{Bmatrix}E_{\varepsilon {x}'}\\ G_{{y}'}(\frac{\partial {v}'_{c}}{\partial x}-\theta _{x}')\\ G_{{z}'}(\frac{\partial {w}'_{c}}{\partial z}-\theta _{y}')\\ {z}'E_{\varepsilon {x}'}\\ -{y}'E_{\varepsilon {x}'}\\ D_{t}\end{Bmatrix}

(Eq.(11.87)):[f_{i}^{l}]^{(e)}=C\iint_{A^{(e)}}^{} N_{i}^{T}b^{l}dA+C\oint_{S^{(e)}}^{}N_{i}^{T}t^{l}dA+p_{i}^{l}

(Eq.(11.90)):b^{l}=\frac{2\rho }{l\pi }(1-(-1)^{l})[g^{x},g_{y},g_{z}]^{T}//

Compute the stiffness matrix and the self-weight equivalent nodal modal force amplitude vector for a 3-noded triangular