Question 2.7:  Compute the true stress and the logarithmic strain using th...

Compute the true stress and the logarithmic strain using the data of Prob.  2-6 and plot the results on log-log paper. Then find the plastic strength coefficient \sigma_{0} and the strain-strengthening exponent m. Find also the yield strength and the ultimate strength after the specimen has had 20 percent cold work.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

To plot \sigma_{\text {true }} vs. \varepsilon, the following equations are applied to the data.

\sigma_{\text {troe }}=\frac{P}{A}

Eq. (2-4)

 

\begin{aligned}&\varepsilon=\ln \frac{l}{l_{0}} \quad \text { for } 0 \leq \Delta l \leq 0.0028 \text { in } \\&\varepsilon=\ln \frac{A_{0}}{A} \quad \text { for } \Delta l>0.0028 \text { in }\end{aligned}

where A_{0}=\frac{\pi(0.503)^{2}}{4}=0.1987 \mathrm{in}^{2}

The results are summarized in the table below and plotted on the next page. The last 5 points of data are used to plot \log \sigma vs \log \varepsilon

The curve fit gives        m=0.2306

\log \sigma_{0}=5.1852 \Rightarrow \sigma_{0}=153.2 \mathrm{kpsi}

For 20 \% cold work, Eq. (2-14) and Eq. (2-17) give,

\begin{gathered}A=A_{0}(1-W)=0.1987(1-0.2)=0.1590 \mathrm{in}^{2} \\\varepsilon=\ln \frac{A_{0}}{A}=\ln \frac{0.1987}{0.1590}=0.2231\end{gathered}

Eq. (2-18): S_{y^{\prime}}=\sigma_{0} \varepsilon^{m}=153.2(0.2231)^{0.2306}=108.4 \mathrm{kpsi} \quad 

Eq. (2-19), with S_{u}=85.6 from Prob. 2-6,

S_{u}^{\prime}=\frac{S_{u}}{1-W}=\frac{85.6}{1-0.2}=107 \mathrm{kpsi} \quad

Eq. (2-14),

A_{i}^{\prime}=A_{0}(1-W)

Eq (2-17),

\varepsilon=\ln \frac{l}{l_{0}}=\ln \frac{A_{0}}{A}

 

Eq. (2-18),

S_{y}^{\prime}=\frac{P_{i}}{A_{i}^{\prime}}=\sigma_{0} \varepsilon_{i}^{m} \quad P_{i} \leq P_{u}

Eq. (2-19),

S_{u}^{\prime}=\frac{S_{u} A_{0}}{A_{0}(1-W)}=\frac{S_{u}}{1-W} \quad \varepsilon_{i} \leq \varepsilon_{u}

Eq. (2-4):

 

\varepsilon=\int_{l_{0}}^{l} \frac{d l}{l}=\ln \frac{l}{l_{0}}
P  \Delta L  A  \varepsilon  \sigma \text { true }  \log \varepsilon \log \sigma_{\text {true }}
0 0 0.198713 0 0
1000 0.0004 0.198713 0.0002 5032.388 -3.69901 3.70177
2000 0.0006 0.198713 0.0003 10064.78 -3.52294 4.0028
3000 0.001 0.198713 0.0005 15097.17 -3.30114 4.1789
4000 0.0013 0.198713 0.00065 20129.55 -3.18723 4.30383
7000 0.0023 0.198713 0.001149 35226.72 -2.93955 4.54687
8400 0.0028 0.198713 0.001399 42272.06 -2.85418 4.62605
8800 0.0036 0.1984 0.001575 44354.84 -2.80261 4.64694
9200 0.0089 0.1978 0.004604 46511.63 -2.33685 4.66756
9100 0.1963 0.012216 46357.62 -1.91305 4.66612
13200 0.1924 0.032284 68607.07 -1.49101 4.83637
15200 0.1875 0.058082 81066.67 -1.23596 4.90884
17000 0.1563 0.240083 108765.2 -0.61964 5.03649
16400 0.1307 0.418956 125478.2 -0.37783 5.09857
14800 0.1077 0.612511 137418.8 -0.21289 5.13805
SNAG-21100207082200
SNAG-21100207083000

Related Answered Questions