Computing Fugacity from Volumetric Data
Use the volumetric information in the steam tables of Appendix A.III to compute the fugacity of superheated steam at 300°C and 8 MPa.
Computing Fugacity from Volumetric Data
Use the volumetric information in the steam tables of Appendix A.III to compute the fugacity of superheated steam at 300°C and 8 MPa.
With tabulated volumetric data, as in the steam tables, it is most convenient to use Eq. 7.4-6a:
f=P \exp \left[\frac{1}{R T} \int_{0}^{P}\left(\underline{V}-\frac{R T}{P}\right) d P\right]
From the superheated vapor steam tables at 300°C, we have
P (MPa) | \hat{V}\left(\mathrm{~m}^{3} / \mathrm{kg}\right) | \underline{V}\left(\mathrm{~m}^{3} / \mathrm{mol}\right) | [\underline{V}-R T / P]\left(\mathrm{m}^{3} / \mathrm{mol}\right) \times 10^{4} |
0.01 | 26.445 | 0.47641 | −1.02 |
0.05 | 5.284 | 0.095191 | −1.121 |
0.10 | 2.639 | 0.047542 | −1.101 |
0.20 | 1.3162 | 0.023711 | −1.145 |
0.30 | 0.8753 | 0.015769 | −1.154 |
0.40 | 0.6548 | 0.011796 | −1.167 |
0.50 | 0.5226 | 0.0094146 | −1.157 |
0.60 | 0.4334 | 0.0078077 | −1.342 |
0.80 | 0.3241 | 0.0058387 | −1.178 |
1.0 | 0.2579 | 0.0046461 | −1.191 |
1.2 | 0.2138 | 0.0038516 | −1.194 |
1.4 | 0.18228 | 0.0032838 | −1.199 |
1.6 | 0.15862 | 0.0028575 | −1.207 |
1.8 | 0.14021 | 0.0025259 | −1.214 |
2.0 | 0.12547 | 0.0022603 | −1.222 |
2.5 | 0.0989 | 0.0017817 | −1.244 |
3.0 | 0.08114 | 0.0014617 | −1.267 |
3.5 | 0.06842 | 0.0012326 | −1.289 |
4.0 | 0.05884 | 0.00106 | −1.313 |
4.5 | 0.05135 | 0.00092507 | −1.339 |
5.0 | 0.04532 | 0.00081644 | −1.366 |
6.0 | 0.03616 | 0.00065142 | −1.428 |
7.0 | 0.02947 | 0.0005309 | −1.498 |
8.0 | 0.02426 | 0.00043704 | −1.586 |
Numerically evaluating the integral using the data above, we find
\int_{0}^{8 \mathrm{MPa}}\left(\underline{V}-\frac{R T}{P}\right) d P \approx-1.093 \times 10^{-3} \frac{\mathrm{m}^{3} \mathrm{MPa}}{\mathrm{mol}}
and
\begin{aligned}f &=8 \mathrm{MPa} e x p\left[\frac{-1.093 \times 10^{-3} \frac{\mathrm{m}^{3} \mathrm{MPa}}{\mathrm{mol}}}{573.15 \mathrm{~K} \times 8.314 \times 10^{-6} \frac{\mathrm{MPa} \mathrm{m}^{3}}{\mathrm{~mol} \mathrm{~K}}}\right]=8 \exp (-0.2367) \mathrm{MPa} \\\\&=8 \times 0.7996 \mathrm{MPa}=6.397 \mathrm{MPa}\end{aligned}
Also, the fugacity coefficient, \phi, in this case is
\phi=\frac{f}{P}=0.7996
COMMENT
Had the same calculation been done at a much higher temperature, the steam would be closer to an ideal vapor, and the fugacity coefficient would be closer to unity in value. For example, the result of a similar calculation at 1000°C and 10 MPa yields f = 9.926 MPa and \phi = f /P = 0.9926.