Question 7.4.1: Computing Fugacity from Volumetric Data Use the volumetric i...

Computing Fugacity from Volumetric Data
Use the volumetric information in the steam tables of Appendix A.III to compute the fugacity of superheated steam at 300°C and 8 MPa.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

With tabulated volumetric data, as in the steam tables, it is most convenient to use Eq. 7.4-6a:

 

f=P \exp \left[\frac{1}{R T} \int_{0}^{P}\left(\underline{V}-\frac{R T}{P}\right) d P\right]

 

From the superheated vapor steam tables at 300°C, we have

 

P (MPa) \hat{V}\left(\mathrm{~m}^{3} / \mathrm{kg}\right) \underline{V}\left(\mathrm{~m}^{3} / \mathrm{mol}\right) [\underline{V}-R T / P]\left(\mathrm{m}^{3} / \mathrm{mol}\right) \times 10^{4}
0.01 26.445 0.47641 −1.02
0.05 5.284 0.095191 −1.121
0.10 2.639 0.047542 −1.101
0.20 1.3162 0.023711 −1.145
0.30 0.8753 0.015769 −1.154
0.40 0.6548 0.011796 −1.167
0.50 0.5226 0.0094146 −1.157
0.60 0.4334 0.0078077 −1.342
0.80 0.3241 0.0058387 −1.178
1.0 0.2579 0.0046461 −1.191
1.2 0.2138 0.0038516 −1.194
1.4 0.18228 0.0032838 −1.199
1.6 0.15862 0.0028575 −1.207
1.8 0.14021 0.0025259 −1.214
2.0 0.12547 0.0022603 −1.222
2.5 0.0989 0.0017817 −1.244
3.0 0.08114 0.0014617 −1.267
3.5 0.06842 0.0012326 −1.289
4.0 0.05884 0.00106 −1.313
4.5 0.05135 0.00092507 −1.339
5.0 0.04532 0.00081644 −1.366
6.0 0.03616 0.00065142 −1.428
7.0 0.02947 0.0005309 −1.498
8.0 0.02426 0.00043704 −1.586

 

Numerically evaluating the integral using the data above, we find

 

\int_{0}^{8 \mathrm{MPa}}\left(\underline{V}-\frac{R T}{P}\right) d P \approx-1.093 \times 10^{-3} \frac{\mathrm{m}^{3} \mathrm{MPa}}{\mathrm{mol}}

 

and

 

\begin{aligned}f &=8 \mathrm{MPa} e x p\left[\frac{-1.093 \times 10^{-3} \frac{\mathrm{m}^{3} \mathrm{MPa}}{\mathrm{mol}}}{573.15 \mathrm{~K} \times 8.314 \times 10^{-6} \frac{\mathrm{MPa} \mathrm{m}^{3}}{\mathrm{~mol} \mathrm{~K}}}\right]=8 \exp (-0.2367) \mathrm{MPa} \\\\&=8 \times 0.7996 \mathrm{MPa}=6.397 \mathrm{MPa}\end{aligned}

 

Also, the fugacity coefficient, \phi, in this case is

 

\phi=\frac{f}{P}=0.7996

 

COMMENT

Had the same calculation been done at a much higher temperature, the steam would be closer to an ideal vapor, and the fugacity coefficient would be closer to unity in value. For example, the result of a similar calculation at 1000°C and 10 MPa yields f = 9.926 MPa and \phi = f /P = 0.9926.

Related Answered Questions