Question 7.3.1: Computing the Properties of a Two-Phase Mixture Compute the ...

Computing the Properties of a Two-Phase Mixture
Compute the total volume, total enthalpy, and total entropy of 1 kg of water at 100°C, half by weight of which is steam and the remainder liquid water.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

From the saturated steam temperature table at 100°C, the equilibrium pressure is 0.101 35 MPa and

 

\begin{aligned}\hat{V}^{\mathrm{L}} &=0.001004 \mathrm{~m}^{3} / \mathrm{kg} & \hat{V}^{\mathrm{V}} &=1.6729 \mathrm{~m}^{3} / \mathrm{kg} \\\\\hat{H}^{\mathrm{L}} &=419.04 \mathrm{~kJ} / \mathrm{kg} & \hat{H}^{\mathrm{V}} &=2676.1 \mathrm{~kJ} / \mathrm{kg} \\\\\hat{S}^{\mathrm{L}} &=1.3069 \mathrm{~kJ} /(\mathrm{kg} \mathrm{K}) & \hat{S}^{\mathrm{V}} &=7.3549 \mathrm{~kJ} /(\mathrm{kg} \mathrm{K})\end{aligned}

 

Using Eq. 7.3-1a on a mass basis gives

 

\underline{V}=\omega^{\mathrm{V}} \underline{V}^{\mathrm{V}}+\omega^{\mathrm{L}} \underline{V}^{\mathrm{L}}=\omega^{\mathrm{V}} \underline{V}^{\mathrm{V}}+\left(1-\omega^{\mathrm{V}}\right) \underline{V}^{\mathrm{L}}                            (7.3.1a)

\hat{V}=0.5 \times 0.001004+0.5 \times 1.6729=0.83645 \mathrm{~m}^{3} / \mathrm{kg}

 

The analogous equation for enthalpy is

 

\hat{H}=\omega^{\mathrm{L}} \hat{H}^{\mathrm{L}}+\omega^{\mathrm{V}} \hat{H}^{\mathrm{V}}=0.5 \times 419.04+0.5 \times 2676.1=1547.6 \frac{\mathrm{kJ}}{\mathrm{kg}}

 

and that for entropy is

 

\hat{S}=\omega^{\mathrm{L}} \hat{S}^{\mathrm{L}}+\omega^{\mathrm{V}} \hat{S}^{\mathrm{V}}=0.5 \times 1.3069+0.5 \times 7.3549=4.3309 \frac{\mathrm{kJ}}{\mathrm{kg} \mathrm{K}}

Related Answered Questions