Question 6.10: Conducting spherical shells with radii a = 10 cm and b = 30 ...

Conducting spherical shells with radii a=10  cm and b=30  cm are maintained at a potential difference of 100V such that V(r=b)=0 and V(r=a)=100V. Determine V and E in the region between the shells. If \varepsilon_{r}=2.5 in the region, determine the total charge induced on the shells and the capacitance of the capacitor.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Consider the spherical shells shown in Figure 6.18 and assume that V depends only on r. Hence Laplace’s equation becomes

\nabla^2 V=\frac{1}{r^{2}}\frac{d}{dr}\left[r^{2}\frac{dV}{dr}\right]=0

Since r\neq 0 in the region of interest, we multiply through by r^{2} to obtain

\frac{d}{dr}\left[r^{2}\frac{dV}{dr}\right]=0

Integrating once gives

r^{2}\frac{dV}{dr}=A

or

\frac{dV}{dr}=\frac{A}{r^{2}}

Integrating again gives

V=-\frac{A}{r}+B

As usual, constants A and B are determined from the boundary conditions. When

r=b,  V=0\rightarrow 0=-\frac{A}{b}+B   or   B=\frac{A}{b}

Hence

V=A\left[\frac{1}{b}-\frac{1}{r}\right]

Also when

r=a,  V=V_{o}\rightarrow V_{o}=A\left[\frac{1}{b}-\frac{1}{a}\right]

or

A=\frac{V_{o}}{\frac{1}{b}-\frac{1}{a}}

Thus

V=V_{o}\frac{\left[\frac{1}{r}-\frac{1}{b}\right] }{\frac{1}{a}-\frac{1}{b}}

E=-\nabla V=-\frac{dV}{dr}a_{r}=-\frac{A}{r^{2}}a_{r}=\frac{V_{o}}{r^{2}\left[\frac{1}{a}-\frac{1}{b}\right]}a_{r}

Q=\int_{S}\varepsilon E\cdot dS=\int_{\theta=0}^{\pi}\int_{\phi=0}^{2\pi}\frac{\varepsilon_{o}\varepsilon_{r}V_{o}}{r^{2}\left[\frac{1}{a}-\frac{1}{b}\right]}r^{2}\sin\theta d\phi d\theta=\frac{4\pi\varepsilon_{o}\varepsilon_{r}V_{o}}{\frac{1}{a}-\frac{1}{b}}

Alternatively

\rho_{s}=D_{n}=\varepsilon E_{r},        Q=\int_{s}\rho_{s}dS

The capacitance is easily determined as

C=\frac{Q}{V_{o}}=\frac{4\pi\varepsilon}{\frac{1}{a}-\frac{1}{b}}

which is the same as we obtained in eq (6.32)

C=\frac{Q}{V}=\frac{4\pi\varepsilon}{\frac{1}{a}-\frac{1}{b}}

there in Section 6.5, we assumed Q and found the corresponding V_{o}, but here we assumed V_{o} and found the corresponding Q to determine C. Substituting a=0.1 m, b=0.3 m, V_{o}=100V yields

V=100\frac{\left[\frac{1}{r}-\frac{10}{3}\right]}{10-10/3}=15\left[\frac{1}{r}-\frac{10}{3}\right]V

Check:

\nabla^2 V=0,    V(r=0.3m)=0,    V(r=0.1m)=100

E=\frac{100}{r^{2}[10-10/3]}a_{r}=\frac{15}{r^{2}}a_{r}V/m

Q=\pm4\pi\cdot \frac{10^{-9}}{36\pi}\cdot\frac{(2.5)\cdot(100)}{10-10/3}=\pm4.167nC

The positive charge is induced on the inner shell; the negative charge is induced on the outer shell. Also

C=\frac{|Q|}{V_{o}}=\frac{4.167\times10^{-9}}{100}=41.67pF

6.18

Related Answered Questions