Question 3.P.13: Consider a charged oscillator, of positive charge q and mass...

Consider a charged oscillator, of positive charge q and mass m, which is subject to an oscillating electric field E_{0}\cos \omega t; the particle’s Hamiltonian is \hat{H}=P_{2}/(2m)+k\hat{X}^{2} /2+ qE_{0} \hat{X}\cos \omega t.

(a) Calculate d〈\hat{X}〉/dt,d〈\hat{P}〉/dt,d〈\hat{H}〉/dt.

(b) Solve the equation for d〈\hat{X}〉/dt and obtain 〈\hat{X}〉(t) such that 〈\hat {X}〉(0)=x_{0}.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) Since the position operator \hat{X} does not depend explicitly on time (i.e.,∂\hat{X}/∂t=0), equation (3.88)

\frac{d}{dt}〈\hat{A}〉=\frac{1}{i\hbar} 〈[\hat{A},\hat{H}]〉+〈\frac{∂\hat{A}}{∂t} 〉.                             (3.88)

yields

\frac{d}{dt}〈\hat{X}〉=\frac{1}{i\hbar} 〈[\hat{X},\hat{H}]〉= \frac{1}{i\hbar}〈\left[\hat{X},\frac{P_{2}}{2m} \right] 〉=\frac{〈\hat {P}〉}{m}.                                 (3.231)

Now, since [\hat{P},\hat{X}]=-i\hbar ,[\hat{P},\hat{X}^{2}]= -2i \hbar \hat{X} and ∂\hat{P}/∂t=0, we have

\frac{d}{dt}〈\hat{P}〉=\frac{1}{i\hbar} 〈[\hat{P},\hat{H}]〉= \frac {1}{i\hbar}〈\left[\hat{P},\frac{1}{2}k\hat{X}^{2}+ qE_{0} \hat {X}\cos \omega t \right] 〉=-k〈\hat{X}〉-qE_{0}\cos \omega t,          (3.232)

 

\frac{d}{dt}〈\hat{H}〉=\frac{1}{i\hbar} 〈[\hat{H},\hat{H}]〉+〈\frac {∂\hat{H}}{∂t} 〉=〈\frac{∂\hat{H}}{∂t} 〉=-qE_{0}\omega 〈\hat{X}〉\sin \omega t.                     (3.233)

(b) To find 〈\hat{X}〉 we need to take a time derivative of (3.231) and then make use of (3.232):

\frac{d^{2} }{dt^{2} }〈\hat{X}〉=\frac{1}{m}\frac{d}{dt}〈\hat{P}〉=-\frac{k}{m}〈\hat{X}〉-\frac{qE_{0}}{m}\cos \omega t.                  (3.234)

The solution of this equation is

〈\hat{X}〉(t)=〈\hat{X}〉(0)\cos \left(\sqrt{\frac{k}{m} }t \right) -\frac{qE_{0}}{m\omega }\sin \omega t+A,                     (3.235)

where A is a constant which can be determined from the initial conditions; since 〈\hat {X}〉(0)=x_{0} we have A = 0, and hence

〈\hat{X}〉(t)=x_{0}\cos \left(\sqrt{\frac{k}{m} }t \right)-\frac {qE_{0}}{m\omega }\sin \omega t.                        (3.236)

Related Answered Questions