Question 3.33.E: Consider a house whose walls are 12 ft high and 40 ft long. ...

Consider a house whose walls are 12 ft high and 40 ft long. Two of the walls of the house have no windows, while each of the other two walls has four windows made of 0.25-in.- thick glass \left(k = 0.45  Btu / h \cdot ft \cdot{ }^{\circ} F \right), 3  ft \times 5  ft \text { in } size. The walls are certified to have an R-value of 19 (i.e., an L/k value of 19  h \cdot ft ^{2} \cdot{ }^{\circ} F / Btu). Disregarding any direct radiation gain or loss through the windows and taking the heat transfer coefficients at the inner and outer surfaces of the house to be 2 and 4  Btu / h \cdot ft ^{2} \cdot{ }^{\circ} F, respectively, determine the ratio of the heat transfer through the walls with and without windows.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Two of the walls of a house have no windows while the other two walls have 4 windows each. The ratio of heat transfer through the walls with and without windows is to be determined.

Assumptions 1 Heat transfer through the walls and the windows is steady and one-dimensional. 2 Thermal conductivities are constant. 3 Any direct radiation gain or loss through the windows is negligible. 4 Heat transfer coefficients are constant and uniform over the entire surface.

Properties The thermal conductivity of the glass is given to be k_{\text {glass }}=0.45  Btu / h \cdot ft \cdot{ }^{\circ} F. The R-value of the wall is given to be 19  h \cdot ft ^{2} \cdot{ }^{\circ} F / Btu.

Analysis The thermal resistances through the wall without windows are

A=(12  ft )(40  ft )=480  m ^{2}

 

R_{i}=\frac{1}{h_{i} A}=\frac{1}{\left(2 \operatorname{Btu} / h \cdot ft ^{2} \cdot{ }^{\circ} F \right)\left(480  ft ^{2}\right)}=0.0010417  h \cdot{ }^{\circ} F / Btu

 

R_{\text {wall }}=\frac{L}{k A}=\frac{19 h \cdot ft ^{2} \cdot ^{\circ} F / Btu }{\left(480  m ^{2}\right)}=0.03958  h \cdot{ }^{\circ} F / Btu

 

R_{o}=\frac{1}{h_{o} A}=\frac{1}{\left(4  Btu / h \cdot ft ^{2} \cdot{ }^{\circ} F \right)\left(480  ft ^{2}\right)}=0.00052  h \cdot{ }^{\circ} F / Btu

 

R_{\text {total }, 1}=R_{i}+R_{\text {wall }}+R_{o}

 

                         = 0.0010417 + 0.03958 + 0.00052 = 0.0411417  h \cdot{ }^{\circ} F / Btu

 

The thermal resistances through the wall with windows are

A_{\text {windows }}=4(3 \times 5)=60  ft ^{2}

 

A_{\text {wall }}=A_{\text {total }} – A_{\text {windows }} = 480  –  60 = 420  ft ^{2}

 

R_{2}=R_{\text {glass }}=\frac{L}{k A}=\frac{0.25 / 12  ft }{\left(0.45  Btu / h \cdot ft \cdot{ }^{\circ} F \right)\left(60  ft ^{2}\right)} = 0.0007716  h \cdot{ }^{\circ} F / Btu

 

R_{4}=R_{w a l l}=\frac{L}{k A}=\frac{19  h \cdot ft ^{2} \cdot{ }^{\circ} F / Btu }{\left(420  ft ^{2}\right)}=0.04524  h \cdot{ }^{\circ} F / Btu

 

\frac{1}{R_{e q v}}=\frac{1}{R_{\text {glass }}}+\frac{1}{R_{\text {wall }}}=\frac{1}{0.0007716}+\frac{1}{0.04524} \longrightarrow R_{e q v}=0.00076  h \cdot ^{\circ} F / Btu

 

R_{\text {total }, 2}=R_{i}+R_{e q v}+R_{o}=0.001047+0.00076+0.00052=0.002327  h \cdot{ }^{\circ} F / Btu

 

Then the ratio of the heat transfer through the walls with and without windows becomes

\frac{\dot{Q}_{\text {total }, 2}}{\dot{Q}_{\text {total }, 1}}=\frac{\Delta T / R_{\text {total }, 2}}{\Delta T / R_{\text {total }, 1}}=\frac{R_{\text {total }, 1}}{R_{\text {total }, 2}}=\frac{0.0411417}{0.002327}=17.7
69

Related Answered Questions