Question 3.P.14: Consider a one-dimensional free particle of mass m whose pos...

Consider a one-dimensional free particle of mass m whose position and momentum at time t = 0 are given by x_{0} and p_{0}, respectively.

(a) Calculate 〈\hat{P}〉(t) and show that 〈\hat{X}〉(t)=p_{0}t^{2}/m+x_{0}.

(b) Show that d〈\hat{X}^{2}〉/dt=2〈\hat{P}\hat{X}〉/m+i\hbar /m and d〈\hat{P}^{2}〉/dt=0 .

(c) Show that the position and momentum fluctuations are related d^{2}(\Delta x)^{2}/dt^{2}=2(\Delta p)^{2}/m^{2} and that the solution to this equation is given by (\Delta x)^{2}=(\Delta p)^{2}_{0} t^{2}/m^{2}+(\Delta x)^{2}_{0} where (\Delta x)_{0} and (\Delta p)_{0} are the initial fluctuations.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) From the Ehrenfest equations d〈\hat{P}〉/dt=〈[\hat{P},\hat {V}(x,t)]〉/i\hbar as shown in (3.134),

\frac{d}{dt}〈\hat{\vec{P}}〉=\frac{1}{i\hbar }〈[\hat{\vec{P}}, \hat{V}(\hat{\vec{R}},t)]〉=-〈\vec{∇}\hat{V}(\hat{\vec{R}},t)〉.

and since for a free particle \hat{V}(x,t)=0, we see that d〈\hat{P}〉/dt=0. As expected this leads to 〈\hat {P}〉(t)=p_{0}, since the linear momentum of a free particle is conserved. Inserting 〈\hat{P}〉=p_{0} into Ehrenfest’s other equation d〈\hat{X}〉/dt=〈\hat{P}〉/m (see (3.132)),

\frac{d}{dt}〈\hat{\vec{R}}〉=\frac{1}{m}〈\hat{\vec{P}}〉.

we obtain

\frac{d〈\hat{X}〉}{dt}=\frac{1}{m}p_{0}.                (3.237)

The solution of this equation with the initial condition 〈\hat{X}〉(0)=x_{0} is

〈\hat{X}〉(t)=\frac{p_{0}}{m}t+x_{0}.                    (3.238)

(b) First, the proof of d〈\hat{P}^{2}〉/dt=0 is straightforward. Since [\hat{P}^{2},\hat{H}]=[\hat{P}^{2}, \hat{P}^{2}/2m]=0 and ∂\hat{P}^{2}/∂t=0 (the momentum operator does not depend on time), (3.124)

\frac{d}{dt}〈\hat{A}〉=\frac{1}{i\hbar} 〈[\hat{A},\hat{H}]〉+〈\frac{∂\hat{A}}{∂t} 〉,

yields

\frac{d}{dt}〈\hat{P}^{2}〉=\frac{1}{i\hbar} 〈[\hat{P}^{2},\hat {H}]〉+〈\frac{∂\hat{P}^{2}}{∂t} 〉=0.                         (3.239)

For d〈\hat{X}^{2}〉/dt we have

\frac{d}{dt}〈\hat{X}^{2}〉=\frac{1}{i\hbar} 〈[\hat{X}^{2},\hat {H}]〉=\frac{1}{2im\hbar }〈[\hat{X}^{2},\hat{P}^{2}]〉,              (3.240)

since ∂\hat{X}^{2}/∂t=0. Using [\hat{X},\hat{P}] =i\hbar, we obtain

[\hat{X}^{2},\hat{P}^{2}]=\hat{P}[\hat{X}^{2},\hat{P}]+[\hat{X}^{2},\hat{P}]\hat{P}

 

=\hat{P}\hat{X}[\hat{X},\hat{P}]+\hat{P}[\hat{X},\hat {P}]\hat{X}+\hat{X}[\hat{X},\hat{P}]\hat{P}+[\hat{X},\hat{P}] \hat{X}\hat{P}

 

=2i\hbar (\hat{P}\hat{X}+\hat{X}\hat{P})=2i\hbar (2\hat{P} \hat{X}+i\hbar );                                                     (3.241)

hence

\frac{d}{dt}〈\hat{X}^{2}〉=\frac{2}{m}〈\hat{P}\hat{X}〉+\frac {i\hbar }{m}.                      (3.242)

(c) As the position fluctuation is given by (\Delta x)^{2}=〈\hat {X}^{2}〉-〈\hat{X}〉^{2}, we have

\frac{d(\Delta x)^{2}}{dt}=\frac{d〈\hat{X}^{2}〉}{dt}-2〈\hat {X}〉\frac{d〈\hat{X}〉}{dt}=\frac{2}{m}〈\hat{P}\hat{X}〉+\frac{i\hbar }{m}-\frac{2}{m}〈\hat{X}〉〈\hat{P}〉.                        (3.243)

In deriving this expression we have used (3.242) and d〈\hat{X}〉 /dt=〈\hat{P}〉/m. Now, since d(〈\hat{X}〉〈\hat{P}〉)/dt=〈\hat{P}〉d〈\hat{X}〉/dt=〈\hat{P}〉^{2}/m amd

\frac{d〈\hat{P}\hat{X}〉}{dt}=\frac{1}{i\hbar}〈[\hat{P}\hat{X} ,\hat{H}]〉=\frac{1}{2im\hbar }〈[\hat{P}\hat{X},\hat{P}^{2}]〉=\frac {1}{m}〈\hat{P}^{2}〉,                       (3.244)

we can write the second time derivative of (3.243) as follows:

\frac{d^{2}(\Delta x)^{2}}{dt^{2} }=\frac{2}{m} \left(\frac{d〈\hat{P}\hat{X} 〉}{dt}-\frac{d〈\hat{X}〉〈\hat{P}〉}{dt} \right)=\frac{2}{m^{2}} \left(〈\hat{P}^{2}〉-〈\hat{P}〉^{2}\right)=\frac{2}{m^{2}} (\Delta p)^{2}_{0},                                (3.245)

where (\Delta p)^{2}_{0}=〈\hat{P}^{2}〉-〈\hat{P}〉^{2}=〈\hat {P}^{2}〉_{0}-〈\hat{P}〉^{2}_{0}; the momentum of the free particle is a constant of the motion. We can verify that the solution of the differential equation (3.245) is given by

(\Delta x)^{2}=\frac{1}{m^{2}}(\Delta p)^{2}_{0}t^{2} +(\Delta x)^{2}_{0}.                                 (3.246)

This fluctuation is similar to the spreading of a Gaussian wave packet we derived in Chapter 1.

Related Answered Questions